DEGREE PROJECT IN COMPUTER SCIENCE 120 CREDITS, SECOND
‘im} CYCLE

BT Wy, STOCKHOLM, SWEDEN 2016

FKTHY

VETENSKAP
39 OCH KONST &%

N

Optimizing Ruby on Rails for
performance and scalability

KIM PERSSON

KTH ROYAL INSTITUTE OF TECHNOLOGY

SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION




VETENSKAP

39 OCH KONST %

Wt

KTH Computer Science
and Communication

Optimizing Ruby on Rails for performance and
scalability

Optimering av Ruby on Rails fér prestanda och skalbarhet

KIM PERSSON
KIMPEQGKTH.SE

Degree project in Computer Science
Master's Programme Computer Science
Supervisor: Stefano Markidis
Examiner: Jens Lagergren
Employer: Slagkryssaren AB
February 2016






Abstract

Web applications are becoming more and more popular as the bound-
aries of what can be done in a browser are pushed forward. Ruby on
Rails is a very popular web application framework for the Ruby pro-
gramming language. Ruby on Rails allows for rapid prototyping and
development of web applications but it suffers from performance prob-
lems with large scale applications.

This thesis focuses on optimization of a Ruby on Rails application
to improve its performance. We performed three optimizations to a
benchmark application that was developed for this project. First, we
removed unnecessary modules from Ruby on Rails and optimized the
database interaction with Active Record which is the default object re-
lational mapping (ORM) in Ruby on Rails. It allows us to fetch and
store models in the database without having to write database specific
query code. These optimizations resulted in up to 36% decrease in ap-
plication response time. Second, we implemented a caching mechanism
for JavaScript Object Notation (JSON) representation of models in the
optimized application. This second optimization resulted in a total of
96% response time decrease for one of the benchmarks. However, we also
observed an increased response time (with approximately with 15%) for
a second benchmark compared to the unoptimized application. Third,
we tuned the garbage collector for CRuby. CRuby is the original im-
plementation of Ruby created by the inventor of the language Yukihiro
Matsumoto. This optimization was performed on top of the already
optimized application with caching and resulted in an overall decrease
in response time: one benchmark showed a response time decrease of
29% with regard to the unoptimized application.

In addition, we evaluated the performance of different Ruby imple-
mentations: we studied the performance of the application with CRuby,
JRuby and Rubinius. We observed that JRuby had the best perfor-
mance. When the optimized and cached application executed in JRuby
it obtained a decrease in response time of up to 32% with regard to the
unoptimized application in CRuby.

In conclusion, we presented that different optimization techniques
can be applied to improve Ruby on Rails performance leading to max-
imum performance increase of 96%. In addition, we showed that the
choice of Ruby implementation is very important as the JRuby imple-
mentation has potential to further increase application performance.
This work is very important for future development and success of the
Ruby on Rails framework as performance is largely seen as the biggest
disadvantage with the framework.



Referat

Optimering av Ruby on Rails for prestanda och
skalbarhet

Webbapplikationer ¢kar i popularitet allt eftersom grianserna for vad
som gar att gbéra i en webbldsare flyttas framat. Ruby on Rails ar ett
populért ramverk for utveckling av webbapplikationer med programme-
ringsspraket Ruby. Ruby on Rails gor det mojlig att snabbt utveckla
en produkt men ramverket lider av prestandaproblem vid utveckling av
storskaliga applikationer.

Detta examensarbete fokuserar pa optimering av en Ruby on Rails
applikation for att forbéttra dess prestanda. Vi utfér tre optimeringar
pa en utvirderingsapplikation som utvecklades for detta projekt. Forst
tog vi bort alla moduler moduler som inte behtévdes frén Ruby on Rails
ramverket och optimerade Active Records interaktion med databasen.
Active Record ar Ruby on Rails objekt-relations-mappning (ORM). Ett
ORM gor det mojligt att himta och lagra information i databasen utan
att behova skriva databasspecifika anrop. Dessa optimeringar resultera-
de i en upp till 36% minskning i applikationens svarstid. I andra hand
implementerade vi en caching modul fér JavaScript Object Notation
(JSON) representationer av databasmodeller i den redan optimerade
applikationen. Denna optimering resulterade i en total minskning av
svarstiden med 96% vid ett utvirderingstest. Vi sdg dock en 6kning av
svarstiden (med uppskattningsvis 15%) for ett annat utvirderingstest
jamfort med den icke optimerade applikationen. Den tredje optimering-
en av applikationen vi utforde var att finjustera skrapsamlaren i CRuby.
CRuby ar den ursprungliga implementationen av Ruby som utvecklades
av sprakets skapare Yukihiro Matsumoto. Denna optimering utférdes
ovanpa tidigare optimeringar och resulterade i en minskning i svarsti-
den for alla utvéirderingstest: ett utvirderingstest visade en minskning
av svarstiden med 29% jamfort med den icke optimerade applikationen.

Utéver ovan ndmnda optimeringar utviarderade vi prestandan av
olika Ruby implementationer: vi studerade prestandan for applikationen
med CRuby, JRuby och Rubinius. We observerade att JRuby gav bést
prestanda. Nér den den optimerade applikationen med caching kordes i
JRuby gav den en minskning i svarstid med upp till 32% jamfort med
den icke optimerade applikationen i CRuby.

Avslutningsvis konstaterar vi att olika optimeringstekniker kan an-
viandas for oka prestandan av en Ruby on Rails applikation. Vi upp-
nadde en minskning av svarstiden med upp till 96%. Utover detta visar
vi att valet av Ruby implementation dr mycket viktigt eftersom JRu-
by har potentialen att ytterligare forbattra en applikations prestanda.
Detta arbete ar viktigt for framtida utveckling och framgang fér Ruby
on Rails ramverket eftersom dess prestanda ofta dr sett som den storsta
nackdelen med att anvidnda ramverket for att utveckla en webbapplika-
tion.



Contents

1 Introduction
1.1 Scientific questions . . . . . . . ... Lo
1.2 Thesis overview . . . . . . . . . . . e

2 Background

21 Ruby . . .. o
2.1.1 The interpreter and compiler . . . . . .. ... ... ... ..
2.1.2  Garbage collection . . . . . . ... ... Lo
2.1.3 Concurrency and global interpreter lock . . . . . .. .. ...

2.2 JRuby . ..o

2.3 Rubinius . . . . . . . .

24 RubyonRails. .. .. .. ... .. .. oo

2.5 Caching . . . . .. .. e

2.6 Scalability . . . . ...

2.7 Databases . . . . . .. e

2.8 Related work . . . . . ... .
2.8.1 Ruby performance and scalability . . . . ... ... ... ...
2.8.2 Database performance . . . . .. ... ... ... ... ....

3 Methodology

3.1 Execution time . . . . . . . ... L Lo
3.1.1 Ruby-prof . . . . .. ... . ..
3.1.2 JRuby profiling . . . . ... ...
3.1.3 Measuring execution time . . . . .. ... ... L.
3.2 Memory . . . ...
3.2.1 Stackprof . . . ...
3.2.2 Measuring memory usage . . . . . . ... e
3.3 Response time . . .. ... .. ...
3.3.1 Measuring response time . . . . . . . ... ...
3.4 Garbage collection . . . . . . .. ... L
3.4.1 Measuring the garbage collector performance . . . ... ...

3.5 Benchmark environment . . . . . . . ... ... . ...

N DN

© © 00 O & ot W

— = = s =
W N R OO O



4 Design and implementation

5 Optimization

5.1 Evaluation endpoints . . . . . . . . ...
5.1.1 Feedendpoint . . . . . . . ... Lo
5.1.2 Followers endpoint . . . . . . . . ... ... ... ... ...,
5.1.3 Post comments endpoint . . . . . ... ..o
5.1.4 Usersendpoint . . . . . . . . ... ...

5.2 Application optimizations . . . . . . ... ... 0oL
5.2.1 Database queries . . . . . . .. ... .. ... ...
5.2.2 Counter cache columns . . . . ... ... ... ........
5.2.3 Removing unnecessary middleware . . . . . . ... ... ...
524 Caching . . . . .. ...

5.3 Ruby versions . . . .. ... oo

5.4 Garbage collection . . . . .. ... oL

5.5  Other Ruby frameworks . . . . . .. ... ... ... ... ......

6 Results

6.1 Optimization tools . . . . . . . . .. .. L oo
6.1.1 Benchmarking and performance measurement . . . . . . . . .
6.1.2 Profiling . . . . .. ...

6.2 Basic application optimizations . . . . . . ... ..o 0L

6.3 Caching . . . . . . . .

6.4 Ruby versions . . . . . . ... L L

6.5 Garbage collection . . . . . . .. ... Lo

6.6 Ruby on Rails server performance . . . . . . ... ... ... .....

6.7 Other Ruby frameworks . . . . . .. .. .. ... .. .. ...,

7 Discussion and conclusion

7.1
7.2
7.3
7.4
7.5
7.6

7.7

Writing efficient code . . . . . . . ..o oL
Increasing the performance of the application . . . . ... ... ...
Better scaling of the application . . . . . . . ... ... ... .....
Other Ruby frameworks . . . . . . ... ... ... ... .......
Conclusion . . . . . . .. e
What tools can be used to evaluate Ruby on Rails performance and
scalability? . . . . . ...
7.6.1 Does Ruby implementation impact performance? . . . . . . .
7.6.2 What parts of Ruby on Rails can be optimized? . ... ...
7.6.3 Verdict . . .. . ...
7.6.4 A high performance Ruby on Rails application . . ... ...
Future work . . . . . . . ..

Bibliography



Appendices 61

A Code 63
A.1 Assert performance gem . . . . . . ... ... 63
A2 Application . . . . . ... 66

A21 Models . .. ... ... . ... 66
A.2.2 Serializers . . . . . .. ... 71
A.23 Controllers . . . . ... . . . . ... .. 72

A24 Tasks . . . . . Q0






Chapter 1

Introduction

Ruby on Rails [20] is a very popular web application framework for the Ruby [31]
programming language. It has become a popular framework because of the devel-
oper productivity and the ability to be able to go from an idea to a working product
in a very short time frame. Some developers who rely on Ruby on Rails to design
a product will face performance problems as the user base increases beyond the
scaling capabilities of the application. When this happens there are two main ways
of solving the problem: either developers can try to optimize the application or they
should rewrite it completely in another framework or programming language with
better performance.

Previous work in this area generally takes a low level approach and focuses
on how to improve the performance of Ruby by optimizing the interpreter [56],
or eliminating the global interpreter lock through hardware transactional memory
in order to achieve true parallelism. [53] This thesis takes a higher level approach
and focuses on optimization of a Ruby on Rails application for better performance
and scalability. We define scalability as how well the application can be scaled on
a single server to support an increasing user base. This thesis does not consider
scaling the application over multiple servers as this is handled outside of the Ruby
on Rails framework.

In this thesis, we analyze tools and techniques to increase the performance of
the Ruby on Rails framework. A Ruby on Rails application was developed to bench-
mark the performance improvements from different optimizations. The application
is RESTful style API modeled after the popular image sharing social network Insta-
gram. This application was used for benchmarking and measuring the effectiveness
of the optimizations.

We perform three different optimizations to the application as well as evalu-
ate the performance of different Ruby implementations. First we used the gem
Rails: :API to remove unnecessary modules from Ruby on Rails and optimized the
database interaction with Active Record. Active Record is the default object rela-
tional mapping (ORM) in Ruby on Rails, it makes it easy to fetch and store models
in the database without having to write database specific query code. Second, we



CHAPTER 1. INTRODUCTION

implemented caching for JSON representation of database models. Third, we tuned
the garbage collector in Ruby using an automated analysis to try to find garbage
collection parameters that improve the application performance.

In addition to the optimizations the application was evaluated with three dif-
ferent implementations of Ruby in order to conclude if performance gains can be
achieved by switching to another Ruby implementation. We also discuss the per-
formance of different Ruby web application servers and compare the performance
of Ruby on Rails to the Ruby micro framework Cuba.

1.1 Scientific questions

The goals of this thesis is to analyze high level performance optimization of the
Ruby on Rails framework. In order to maintain a scientific approach in trying to
analyze the problem a set of scientific questions have been established. This thesis
seeks to further research these topics and proposes answers to the questions.

¢ What tools can be used to evaluate Ruby on Rails performance and scalability?
e Does Ruby implementation impact performance?
e What parts of Ruby on Rails can be optimized?

— Memory consumption
— Object-relational mapping (ORM)

— Garbage collection

Choice of application server

Removal of unnecessary modules

To answer these questions is very important for the future development of the
Ruby on Rails framework. To show that there is a potential for a series of optimiza-
tions to improve the performance of the Ruby on Rails web applications.

1.2 Thesis overview

This thesis focuses on high level optimizations of Ruby on Rails. We optimize an
existing Ruby on Rails application to improve performance and scaling on a single
server. The purpose of this project is to investigate how much the performance of
a Ruby on Rails application can be improved without having to make significant
changes to the application code base.

Chapter 2 presents an overview of the background for the thesis, Ruby, JRuby
and Rubinius are presented and performance related features of each of the differ-
ent Ruby implementations are presented and analyzed. The chapter also gives an
overview of the Ruby on Rails framework and describes why it is so popular in web



1.2. THESIS OVERVIEW

application development. Lastly the chapter describes different database technolo-
gies that can be used with Ruby on Rails as well as related works in this area of
research.

Chapter 3 describes the methodology used for conducting the experiments of
this project, it presents the different tools used for performance evaluation and
benchmarking of the application. It also provides a detailed description of the
environment in which the performance benchmarking and evaluation was performed.

Chapter 4 outlines the application that was implemented as a basis for opti-
mization. It discusses the motivation for the choice of application and provides a
detailed specification of the application functionality.

Chapter 5 presents different optimization techniques and tools. A subset of the
techniques were chosen and performed as optimizations for this thesis project. The
chapter also presents and motivates which parts of the application was used for
benchmarking application performance.

Chapter 6 presents the results from the performed optimizations. It gives an
overview of resulting application performance both in the form of average request
response time and total system memory consumption. These metrics are used for
drawing conclusions of the efficiency of optimization techniques for the Ruby on
Rails framework.

Chapter 7 discusses the results from the optimizations and concludes whether the
Ruby on Rails framework can be optimized for better performance and scalability.
It proposes an optimization suite for Ruby on Rails applications that need better
performance and more efficient scaling and suggests suitable topics for future work
in this area of research.






Chapter 2

Background

In the previous chapter we presented an introduction to this thesis, this chapter
provides background information. In this chapter we introduce three different Ruby
implementations and discuss how they handle important performance aspects like
multithreading and garbage collection. Unique aspects of each Ruby implementation
are presented in a short and concise manner. An introduction to the Ruby on
Rails is also provided as well as a short introduction to different database systems.
Related works in the area of optimizing high level dynamic programming languages
are presented together with works discussing relational and NoSQL databases and
their performance.

2.1 Ruby

Ruby is an open source high level dynamic programming language created in 1995
by Yukihiro Matsumoto. It is an object oriented scripting language with focus on
simplicity and programmer productivity. Ruby fully embraces the object oriented
model, everything in Ruby is an object. The elegant and consistent syntax of Ruby
makes code easy to understand and write while still offering advanced meta pro-
gramming features that can be taken advantage of to solve complex problems. [31]
It has been commended as a language that stays out of the way, allowing the pro-
grammer to focus on solving the task at hand instead of dealing with language
related issues. [63]

Ruby has multiple different implementations. This thesis will consider CRuby
which is the notation for the official Ruby implementation developed by Yukihiro
Matsumoto [31], Rubinius which is an alternative implementation of Ruby that
allows programmers to take better advantage of multi core processors with concur-
rent programs [25] and JRuby which is an implementation that executes Ruby code
inside the Java virtual machine. [10]



CHAPTER 2. BACKGROUND

2.1.1 The interpreter and compiler

Ruby was originally a fully interpreted programming language, where the interpreter
first tokenizes and parses the text written in the ruby file, the parsed text was used
to create nodes to represent the code written by the programmer and these nodes
were saved in an abstract syntax tree (AST). Ruby would then run the code by
walking the AST executing the nodes one by one. [58] The biggest problem with this
approach to program execution is that it becomes very slow compared to compiled
languages. This lead to early Ruby versions suffering from severe performance
problems.

Koichi Sasada showed that the speed of Ruby programs can be significantly im-
proved by adding another step before execution, namely compiling the code into
instructions that can be executed in a virtual machine. With the creation of Yet
Another Ruby VM (YARV) Sasada was able to optimize Ruby execution and obtain
a speed up of multiple times faster execution compared to the original Ruby inter-
preter. [56] In fact the YARV virtual machine was so successful that it was added
to Ruby as the default execution environment for Ruby code following release 1.9.
Pat Shaughnessy showed that Ruby 1.9 can be over four times faster than Ruby 1.8
in executing simple programs [58].

2.1.2 Garbage collection

Garbage collection (GC) has a huge impact on application performance but is very
hard to program into a language. Many algorithms have been developed to try
to make garbage collection as effective as possible, but they have yet to reach the
speed of manual memory management languages like C. Ruby comes with auto-
matic garbage collection based on the mark-and-sweep algorithm invented by John
McCarthy in 1960. [50] In Ruby the garbage collector has three main responsibili-
ties, allocating memory for new objects, identifying unused objects and reclaiming
memory from unused objects.

The initial implementation of the garbage collection uses the relatively simple
mark-and-sweep algorithm. It maintains a list of available entities in a free list,
when Ruby needs memory for a new object it gets assigned one entity from the
list. Once the list is empty the execution of the application is paused while the
garbage collector traverses all allocated objects and marks any object that is still
referenced in the application. Any object not marked after the traversal is swept
by the algorithm and returned to the free list. Version 1.9.3 of Ruby introduced a
feature called lazy sweeping, with this feature the garbage collector only sweeps a set
amount of objects back to the free list. This reduces the time spent with execution
paused each time the collector is run, but instead increases the frequency of which
it has to run. Version 2.1 introduced a generational garbage collection algorithm
where it keeps track of which objects are young and which are mature. Mature
objects are more likely to continue living in the application therefore they do not
have to be swept as often as the young ones. Therefore the garbage collector saves



2.1. RUBY

time by not checking the mature objects in every garbage collection sweep. [58]

The fact that the execution of the entire Ruby application is stopped when
garbage collection is run means that memory allocation has a large impact on ap-
plication performance in Ruby. Allocate an unnecessary amount of memory and
the garbage collector has to run more often leading to more pauses in execution and
lower performance.

Because Ruby offers the programmers so much freedom in how problems can
be solved with the language, knowing exactly how the high level functionality is
implemented and what effects it has on the performance is essential to writing high
performing Ruby applications. Alexander Dymo showed that commonly used iter-
ator functions in Ruby can create up to three additional objects each iteration. [42]
This means more objects that need to be handled by the Ruby garbage collector
and slower run time of the application. Ruby offers much convenient functionality
to help the programmer solve problems as easy and efficiently as possible, but using
some of this functionality without understanding of the underlying implementation
can lead to significantly slower applications and should be avoided when developing
anything time critical.

2.1.3 Concurrency and global interpreter lock

With modern central processing units (CPU) having an increasing amount of cores
instead of higher clock frequency we can no longer assume that the execution speed
of our applications will increase as the processing power of our computers increases.
In order to take advantage of the increase in power we need to write code that takes
advantage of multiple cores. Starting with version 1.9 Ruby offers real operative
system level threading rather than green threads that are handled solely by the
interpreter [63]. By supporting threads Ruby offers concurrent execution of appli-
cations, however it does not support parallel execution of Ruby code, meaning that
in this implementation of Ruby multiple sections of Ruby code will never execute at
the same time. The reason for this restriction is the use of something called global
interpreter lock (GIL). GIL is a mutual exclusion (mutex) lock that threads need to
acquire before they are allowed to execute code in the interpreter. Only one thread
can hold the lock at any time so additional threads have to wait their turn. The
developers of Ruby have implemented the GIL in order to reduce the risk race con-
ditions in both the internal Ruby code as well as the application code, but this puts
a limit on parallelization of Ruby applications. There is one important exception
to the limitations of the GIL and that is blocking input/output (I/O) operations.
When one thread gets blocked waiting for a heavy I/O operation the GIL lock is
released and another thread can acquire it to start execution. This allows for I/O
heavy applications to receive a speedup using multiple threads even though the GIL
prevents parallel execution. [61]



CHAPTER 2. BACKGROUND

2.2 JRuby

JRuby is Ruby running inside the Java virtual machine (JVM). Using Java to power
Ruby comes with many advantages, applications using JRuby get access to real multi
threading in the JVM without the many limitations of the GIL. JRuby also allows
for seamless integration between Ruby and Java code giving developers access to
the large library of tools available within the Java ecosystem as well as the option
to write time critical parts of the application in Java instead of Ruby. By writing
parts of the application in Java they can take advantage of the speed of Java while
still benefiting from the fast development of Ruby.

JRuby supports multiple ways of executing Ruby code. The simplest way works
much like in CRuby 1.8 by reading the text of the program file, interpreting the
instructions and executing the code. The biggest disadvantage with this way of
executing code is that much like in the case of CRuby the performance of the
applications gets degraded. For better performance JRuby comes with a just in
time (JIT) compiler. The JRuby JIT compiler analyzes the application at run-
time and finds the parts of the application where the most of the execution time is
spent. The compiler uses the live information from run-time in order to optimize and
compile these sections into Java native byte code that the JVM can execute straight
away. The JIT compiler makes the application run faster over time as the compiler
gathers more information about the application. It can also make the start-up time
of the application much faster as there is no need to compile the entire project at
start-up. JRuby also supports ahead of time (AOT) compilation where the entire
code base is compiled into Java byte code before run-time, for most applications
JIT is preferable due to the compiler having access to run-time information for
optimizations when compiling but AOT compilation is a viable option on platforms
where JIT not available. [52]

JRuby has access to the very fine tuned garbage collector built into the JVM.
The GC works by copying the objects still in use to another segment of memory
then reclaiming all the memory of the first segment. One of the biggest advantages
of the JVM GC is that it allows for concurrent garbage collection, meaning that the
application can continue executing even as memory is being reclaimed, this offers a
big advantage over the garbage collector of CRuby where the application execution
has to pause during collections. It also supports generational garbage collection
where mature objects which are more likely to survive the collection are separated
from the young ones so the collection of mature objects can run less frequently. [58]

JRuby uses the threading functionality of the Java JVM and does not enforce any
GIL to inhibit real parallel threading in applications. Instead of a GIL to protect the
internal functionality JRuby uses fine grain locking for increased parallelizability.
JRuby however, does not implement any protection from race conditions in the code
it executes, therefore the responsibility for correct management of multi threaded
applications falls on the developers. Due to the fact that code is executed in the
JVM, JRuby does not support extensions relying on the third party C API available
to programmers in CRuby. Third party extensions have to be rewritten in Java for



2.3. RUBINIUS
compatibility with JRuby. [61]

2.3 Rubinius

Rubinius is an alternative implementation of Ruby that puts emphasis on per-
formance and concurrency with its support for parallel execution of threads. [25]
Rubinius offers a very unique implementation of Ruby with large parts of the Ru-
binius kernel written in pure Ruby code. This gives developers the option to easily
look up implementation details about built in Ruby classes and methods. It uses a
virtual machine implemented in C++4 that much like JRuby supports JIT compila-
tion into byte code that can be executed at a significantly faster speed than purely
interpreted code.

Rubinius uses much like JRuby an advanced copying garbage collection algo-
rithm that supports generational and concurrent collection. The garbage collection
algorithm in Rubinius is based on an algorithm called Immix. [58] Immix uses a
mixture of marking and copying to achieve better performance, it has been shown
to increase total application performance of 7% to 25% compared to many other
algorithms. It introduces opportunistic copying to a marking garbage collection
algorithm making it possible to rearrange the objects in memory for maximal col-
lection and allocation efficiency. [39]

Rubinius offers real system level threading without a GIL and uses fine grain
locking to protect internal operations from race conditions. Unlike like JRuby Ru-
binius does support the C extension API provided by CRuby, trusting that the
extension developers will make them capable of running in a parallel execution
environment. [61]

2.4 Ruby on Rails

Ruby on Rails (RoR) is an open source web framework with emphasis on sustainable
productivity. [20] RoR makes development, deployment and maintenance easier and
it is one of the biggest reasons to Ruby’s rise in popularity for web development.
It is an Model-View-Controller (MVC) framework following two core philosophical
principals. Don’t repeat yourself (DRY) which means that every piece of knowledge
in a system should reside in only one place, thus removing any duplicity in config-
uration. The other core principle is convention over configuration (COC). RoR is a
very opinionated framework that comes with default settings that fit most projects.
The COC principle means that a developer should only have to configure settings
that go against the RoR conventions. Agile development is one of the foundations
of RoR, the framework makes it easy to deliver early working prototypes and adapt
the project to changing requirements. [55]

The expressiveness of the Ruby language combined with the power of RoR makes
development faster than with many other languages and frameworks. A Ruby on
Rails developers can get a working prototype up and running quickly which is very



CHAPTER 2. BACKGROUND

important in todays world of rapid prototyping and agile development. The frame-
work delivers a complete stack for everything from connecting to a database, render-
ing views to providing RESTful services that other applications can consume. [45]

In addition to the original CRuby Ruby on Rails is supported by JRuby [52]
and Rubinius [26]. The performance of Ruby on Rails can differ depending on
the interpreter. [52] states that Ruby on Rails applications can perform better by
just switching from CRuby to JRuby and taking advantage of the advanced multi
threading and garbage collection of the JVM.

2.5 Caching

Caching is very important for performance in computer applications. The central
processing unit (CPU) of a modern computer has multiple cache memories. These
memories are small buffer memories which are very fast. The CPU uses them to
store information which is believed to be in use so that when it needs some data
next time it may be able to find it in the cache instead of having to request it from
the slow main memory. [59]

Caching can also be used inside applications to buffer information which is
likely to be needed again in the memory of the computer. By caching information
in memory the application can avoid repeated expensive fetching operations to
get information from the hard drive or external services. Caching can be done in
different layers from caching the results of an expensive application operations to
caching the entire response to a request and serving subsequent requests with the
exact same information. [24]

2.6 Scalability

Scalability is a common term when describing multiprocessor systems and dis-
tributed systems. It is a term that can be used to describe many different attributes
of a system. [47] tries to find a useful and rigorous definition for the term but fails.

The term scalability is sometimes used to describe the efficiency of a system in
a multiprocessor environment. This is the definition which is used in this thesis
project. It is used as a metric for how the application is able to take advantage of
multiple cores in a modern computer system.

2.7 Databases

When storing large amounts of information that needs to be easily accessible it is
most likely a good idea to use a database of some kind. In 1970 [40] presented
a new way of storing data, the ideas from the paper published by Codd came to
evolve into the relational database systems that are used in many modern system.
Relational databases offer structured query language (SQL) which is an advanced
high-level language for accessing information stored in the database.

10



2.8. RELATED WORK

At the foundation of relational databases lies the transaction properties abbre-
viated as ACID. The A stands for Atomicity meaning that all transactions are
all-or-nothing, that is they are either fully committed to the database or rolled
back. The C stands for consistency which basically means that transactions can
not put data elements in a state that breaks any constraints set on those elements.
I stands for isolation an has the effect that each transaction should appear to be
executed as if there are no other transactions. Lastly the D stands for durability
and states that a completed transaction must never be lost even in the event of
system failures. Modern relational databases offers an easy to use yet very powerful
way of querying for data while maintaining high durability even in the event of
failures. [44]

With the rising need to store large amounts of unstructured or semi structured
data a another type of database has increased in popularity, the NoSQL databases
offer a fast and efficient way of storing large amounts of data that may not be suitable
for a relational database. By sacrificing the ACID properties the NoSQL databases
are in some cases able to achieve higher performance than relational databases.

NoSQL databases are generally divided into three categories, key-value store
which is an index for storing data accessible by a specific key, column-oriented
database which stores information in columns containing related data. The last
category of NoSQL is document-based stores which orders the data into collections
of documents instead of tables. The structure of individual documents can be
different from others in the same collection, this gives more freedom to how the
unstructured data is represented. [48]

But NoSQL is not only popular with large applications that process mainly un-
structured data, [54] showed that with modest-sized structured data NoSQL can
offer performance gains over relational databases. Combine performance and flexi-
bility of information structure with a querying syntax that is easy to understand and
does not require the developer to learn a new language just to query the database
for information and it becomes apparent why NoSQL is gaining popularity. [48]

MongoDB [14] is one popular NoSQL implementation, it offers a document
oriented database system that represents documents in a form similar to the simple
JavaScript object notation (JSON) [11] making it easy for developers to visualize
objects as stored documents. Documents are grouped into collections and can be
accessed using an easy to understand querying language. MongoDB offers great
performance and simple horizontal scaling, so that additional servers easily can be
added to increase capacity. [14]

2.8 Related work

Much work has been done in the area of optimizing program execution, but since this
project focuses on the optimization of the high level programming language Ruby
and the web framework Ruby on Rails many low level optimization techniques are
not viable. This chapter will focus on related works that are relevant to optimizing

11



CHAPTER 2. BACKGROUND

Ruby and Ruby on Rails for both better performance and general scalability.

2.8.1 Ruby performance and scalability

In a scripting language like Ruby the speed of the interpreter has a huge impact
on application performance. Yet Another Ruby VM (YARV) [56] showed how the
performance of Ruby can be significantly increased with a Ruby virtual machine
that compiles the code before running it. YARV performes simple algorithms many
times faster than the fully interpreted Ruby version. With version 1.9 of Ruby
YARV was included as the default virtual machine for Ruby.

Another big bottleneck in Ruby performance is the global interpreter lock (GIL)
which inhibits parallel execution of Ruby code. [53] demonstrated how the GIL can
be eliminated with the use of hardware transactional memory to achieve a 1.2-fold
speedup with Ruby on Rails. Hardware transactional memory comes with many
restrictions as to how much memory can be used in one transaction. It requires
that support is implemented on many different platforms before it becomes a viable
option for replacing the GIL. [51] looks at different options for eliminating the GIL
in the dynamic programming language Python and suggests that software trans-
actional memory may be a viable option. Software transactional memory offers
arbitrarily long transactions and does not require support from the hardware but
comes with large performance loss compared to hardware transactional memory.
More research is needed into both hardware and software transactional memory
before any of them can offer a viable replacement for the GIL. This project dif-
fers from this research in how it puts focus on higher level optimizations rather
than changing language implementation specific details in order to increase overall
performance.

Raw performance is not the only factor when trying to build fast web applica-
tions, scalability is another important factor. Being able to utilize available sever
resources is important as well as the ability to distribute functionality over many
servers [57] looks at how DRuby and Rinda can be used to build Ruby applications
distributed over many servers with remote method invocation (RMI) and paral-
lel coordination. DRuby offers an approach to distributed computing that is very
similar to regular Ruby applications, thus shortening the learning curve for Ruby
developers. By showing concepts, design as well as the implementation of DRuby
the paper seeks to demonstrate that Ruby and DRuby is a viable and robust infras-
tructure for building distributed applications.

Due to the GIL inhibiting parallel execution of Ruby code it is the general con-
vention to use multiple processes instead of threads to achieve better performance
and utilize multi core processors. However, when introducing multiple independent
processes executing the same code it gets harder to debug the software [38] shows
how fork handlers can be used for a better debugging experience of multi process
applications with the open source debugger Dionea.

[43] discusses the implementation of a JIT compiler for the dynamic program-
ming language JavaScript. It identifies hot spots in program execution and records

12



2.8. RELATED WORK

the traces of the execution path together with the types of variables in the code.
Since JavaScript is a dynamic language the type of a variable is determined dy-
namically at run time and may differ in different executions of the same section of
code. The recorded hot spots can be used instead of regular code interpretation
next time that section of code is to be executed if the variable types coincide. The
recorded traces can be executed with much higher speed than interpreted code, thus
providing a significant speedup in hot spot heavy code. The concepts discussed can
be applied to Ruby as well since it faces the same issues due to dynamic variable
types. [65] discusses the implementation of a trace based JIT compiler for dynamical
programming languages using a hierarchical structure of virtual machines. By run-
ning a virtual machine executing the code of the dynamic language inside another
virtual machine that implements trace based JIT compilation and optimization, the
authors make it possible to use one well optimized JIT compiler for multiple differ-
ent dynamic languages. This can be done by just implementing the inner VM that
executes the code and exposes the information needed for the outer VM to perform
the JIT compilation. The big advantage with this approach is that it would become
much easier to implement JIT compilation for a dynamic programming language
and the performance of a mature and well optimized virtual machine can be taken
advantage of to increase the performance of programming languages like Ruby.

One advantage with dynamic programming languages is that the variable types
are determined at run time instead of during compile time like with static type
languages. Dynamic variable types allow a variable to be an integer one time and
a string the next time the same piece of code is executed. With dynamically typed
languages more freedom is given to the programmer to manipulate the variables but
this comes with a performance cost. Since a variable can have any type at any time,
the interpreter or virtual machine executing the code must continuously lookup
the variable types and this type checking is responsible for a significant part of
program execution time. [64] suggests a dynamic intermediate representation of code
for scripting languages, by encoding variable types at each point of execution the
overhead created by costly type checking is reduced. Implementing this technique
for the Lua scripting language showed performance speed-ups of 1.3x on average in
general benchmarks.

2.8.2 Database performance

Databases is a popular field of research and there are many works describing low
level optimizations to increase the performance of different database systems. [49]
compares the performance of multiple NoSQL implementations to SQL for different
common database tasks. They show that performance of NoSQL varies greatly and
while some of the implementations perform overall better than SQL, that is not the
case for all NoSQL databases.

[54] takes another approach and compares the performance of a popular NoSQL
implementation called MongoDB with SQL Server using a modest-sized structured
database. With this comparison they show that MongoDB can perform equally well

13



CHAPTER 2. BACKGROUND

or better than the SQL server in test cases not dealing with aggregate functions.
This shows that NoSQL can be utilized for structured as well as unstructured data,
making it a viable database back end for web applications even if the data is rather
structured. [60] on the other hand argues that the performance gains achieved in
NoSQL are due to the logging, locking, latching and buffer management that SQL
databases offer for a more reliable and an durable system. The author claims that
by eliminating these SQL bottlenecks performance on pair with NoSQL can be
achieved.

14



Chapter 3

Methodology

Previous chapter provides some background information about Ruby on Rails as well
as a presentation of other works that are related to this project. In this chapter
we present some more in depth information about the tools and methods that were
used for optimization.

A computer is an advanced system of components working together to perform
complex tasks and calculations. The computer architecture has evolved and become
much more sophisticated since the invention of the first computer systems. In early
computers memory and processor performance were on the same level, but as the
technology advanced a gap between the performance of the CPU and the main
memory arose. Over time this gap increased to the point where the processor has
to wait for a long time to fetch data from the memory.

In order to combat the increasing performance gap between the CPU and main
memory intermediate levels of memory were introduced in the form of caches. A
modern CPU often has three levels of caches with different speed and capacity to
avoid having to fetch information from the slow main memory if possible.

L1 52 b5
c € B] Vemoy
L1 a a a =i Disk storage
c G L
h h h
e e e Disk
Register Level 1 Level 2 Level 3 Memory r;r}g?;%rgfe
reference Cache Cache Cache reference
reference reference reference
Size: 1000 bytes 64 KB 256 KB 2-4 MB 4-16 GB 416 TB
Speed: 300 ps 1ns 3-10 ns 10-20 ns 50-100 ns 5-10ns

Figure 3.1. The memory architecture of a modern computer. Adapted from [46]

Figure 3.1 shows the memory architecture of a modern server computer. It

15



CHAPTER 3. METHODOLOGY

contains a small set of very fast registers which can be used for storing and retrieving
a small amount of data, the registers are very fast but also very expensive thus the
very limited size. In addition to the registers three levels of caches are used to
improve performance, the L1 cache is the fastest cache but the smallest, the L2
cache can fit more information but is substantially slower. The L3 cache is the
largest and slowest cache, however it is still much faster than the main memory. [46]

One very important characteristic of program execution is that data that has
just been used and its neighboring data are likely to be needed again in the future,
this is called program locality. Program locality is divided into two categories,
temporal locality which is the concept that a resource that is referenced at one
point is likely to be referenced again some time in the future, spatial locality on the
other hand is the concept that resources near a referenced resource are likely to be
referenced in the future. [13]

CPU caching has significant impact on application performance. In order to
create high performing applications it is important to take advantage of the caching
to achieve better performance. However, there are many more factors to application
performance than utilizing the cache in the CPU. In this chapter execution time,
memory and garbage collection will be considered. How they can be measured,
analyzed and optimized will be the main focus for the rest of the chapter.

3.1 Execution time

Program locality has a big impact on execution speed, if an application has good
locality that means that the processor has to spend little time waiting to fetch
resources from the main memory, but on the other hand if the application has bad
locality, not only does the processor have to wait to fetch resources from memory,
additional time is also wasted fetching spatially nearby located resources that will
not be of any use. Many optimizations for locality is made by the compiler at
compile time but it is also important for the developer to take these concepts in to
consideration when writing high performance applications.

In order to make an application run faster it is important to know where most
execution time is spent because this is what needs to be optimized. A profiler can
be used to help find the most CPU and memory intensive sections of an application.

3.1.1 Ruby-prof

Ruby-prof is a popular profiling tool for Ruby and Ruby on Rails applications. It is
a fast profiling tool for Ruby code written as a Ruby C extension. [27] The primary
use case for ruby-prof is to profile parts of a Ruby application to figure out where
the largest performance bottlenecks are located. However, it can also be added as
a RoR middleware to give an overview of the application performance, including
the functionality that is handled by the Rails framework. Profiling results can be
exported into multiple formats including the callgrind format used by the popular
C and C++ profiler Valgrind [42]. This allows for the results to be visualized with

16



3.1. EXECUTION TIME

tools developed for Valgrind like KCachegrind [12]. Figure 3.2 shows a call graph
visualization of the results from a CPU profiling using KCachegrind. Ruby-prof is

ActiveRecord::Scoping:

scope

Figure 3.2. Call graph from CPU profiling of the feed endpoint in KCachgrind

mainly used for CPU profiling of Ruby applications but with a patched version of
Ruby it is possible to obtain readings of either the size of memory allocated or the
number of allocations made within a block of code. This makes it possible to use
ruby-prof for memory profiling as well. [42]

17



CHAPTER 3. METHODOLOGY

3.1.2 JRuby profiling

One big advantage with using JRuby instead of CRuby is the ability to use tools
from the very large Java ecosystem. Profilers are no exception to this, there are
many tools available for profiling Java applications. One popular Java profiler is
JProfiler, it offers a complete profiling suite with support for memory, CPU and
thread based profiling. [9] An alternative to JProfiler is the YourKit Java profiler.
It offers a similar feature set to JProfiler with CPU, memory and thread based
profiling. [37]

3.1.3 Measuring execution time

Application execution time may not be the best metric for measuring the efficiency
of a web application due to the fact that there are many factors that determine
the user perceived application performance than merely execution time. It can
however, it can give great insight into where calculation intensive bottlenecks of the
application are located.

Measuring code execution time

After profiling an application and figuring our which parts of the code are the
biggest performance bottlenecks the code can be optimized in order to increase
performance. But too many factors affect the execution time of an application for
it to be a viable measurement to determine how a small change to the code base
affects the performance.

Listing 3.1. Benchmarking code in the assert_ performance gem

def self.benchmark code(name, &block)
operation_results = nil
read , write = [O.pipe
(0..30).each do |i]

# Force GC to reclaim all memory used in previous run

GC.start

pid = fork do
# GC extra memory that fork allocated
GC.start
# Disable GC if option set
GC. disable if ENV["RUBY_DISABLE GC"]

# Store results in a between runs

benchmark results = File.open("benchmark results_#{name}",
n a n )

elapsed_time, memory_ after, memory_before = nil

begin

18



3.1. EXECUTION TIME

ActiveRecord :: Base. transaction do

memory_ before = ‘ps —o rss= —p #{Process.pid} ‘. to_i
elapsed__time = Benchmark:: realtime do
operation_results = yield
end
memory_ after = ‘ps —o rss= —p #{Process.pid} ‘. to_i
raise PerformanceTestTransactionError
end

rescue PerformanceTestTransactionError
# Rollback database
end
# Skip first run to exclude cold start measurements
if i >0
# Store runtime
benchmark results.puts elapsed time.round(6)
end
benchmark results.close
GC.enable if ENV|['RUBY_DISABLE GC"]

read.close
results = {results: operation_results |,
memory: (memory_after — memory_ before)}
Marshal .dump(results , write)
end
Process :: waitpid pid
end
measurements = File.readlines("benchmark results #{name}").
map do |value |
value.to f
end
File.delete ("benchmark_results_ #{name}")

average = average (measurements).round(5)
stddev = standard__deviation (measurements).round (5)
end

To be able to measure the performance of specific sections of code the ruby gem
assert-performance was implemented from specifications in [42]. Listing 3.1 shows
a selection of the code for measuring execution time. The gem can run an arbitrary
block of Ruby code and measure the time taken for execution. In order to minimize
the effects from external factors the code is executed 30 times and the mean value
is calculated as well as the standard deviation.

19



CHAPTER 3. METHODOLOGY

This gem is used for measuring the impact of optimizations on specific parts of
Ruby on Rails code. By measuring the execution time before and after a specific op-
timization the results can be compared. This can be used as a basis for deciding the
efficiency of the optimization. Measurements made with the gem are automatically
persisted to Parse [18] for further evaluation at a later stage.

Measuring database queries

Database performance has a huge impact on the overall performance in database
heavy applications and applications developed with Ruby on Rails often fall into
this category. Active Record [1] offers an abstraction from the underlying database
layer. This allows developers to write code that is independent of the database im-
plementation. Queries in Ruby format are automatically converted into queries in
the query language supported by the database. This makes developing applications
easier since the developers do not have to worry about database implementation
specific details. However, with this convenience some control is lost, changes to the
code can lead to unanticipated changes to the queries generated by Active Record.
These query changes may negatively affect the performance of the application. In
order to monitor changes in queries the assert-performance gem implements func-
tionality to catch all database queries executed for a specific block of code. Using
Active Record provided event hooks the generated queries are logged and persisted
to Parse. This makes it easier to understand how code optimization affects queries
to the database and allows for optimization without writing database dependent
queries by hand.

New Relic RPM [15] is a performance monitoring and profiling Ruby gem which
can be used in a production environment to monitor vital server stats and appli-
cation performance. In addition to general performance statistics the RPM gem
offers detailed database performance data. The most time consuming queries can
be analyzed and the gem offers general suggestions for how to fix performance is-
sues. Profiling in a production environment allows for identifying bottlenecks that
may not be discovered when profiling in the development environment and RPM
makes that possible without adding significant performance overhead.

3.2 Memory

Memory is a finite resource in a modern computer system. Memory allocated by
one application has to be freed at some point in time so that the computer does
not run out of resources. Some programming languages like C have manual mem-
ory management where it is the developers responsibility to return any allocated
resources back to the system after usage. [41] This gives full control over the appli-
cation memory to the developer but this power can be a double edged sword. On
one hand it makes it possible to write better performing applications by optimizing
memory management. On the other hand it opens up the possibility for memory

20



3.3. RESPONSE TIME

mismanagement which can cause memory leaks or other severe malfunctions in the
application.

Unlike C Ruby has fully managed memory, relieving the developer of the respon-
sibility of freeing allocated memory. This allows all focus to be put on developing
application functionality. This convenience comes with a hefty performance price
however, in CRuby the entire execution pauses so that the garbage collection algo-
rithm can free unused objects. If this pause in execution happens at a crucial time
in performance critical applications it can cause severe problems. It is therefore
essential to not allocate unnecessary objects in order to minimize the amount of
work the garbage collector has to perform.

Much like the execution time, memory usage can also be profiled using similar
profiling and measurement tools.

3.2.1 Stackprof

Stackprof [34] is a memory profiler that provides a different approach to profiling
memory. Instead of measuring the amount of memory allocated in different parts
of the application it focuses on the number of objects allocated [42]. Stackprof can
help locate where unnecessary objects are created in the application.

3.2.2 Measuring memory usage

Profiling an application can give great insights into which parts consume the most
memory, but the act of profiling changes the environment of the application com-
pared to how it is used in production. What matters the most when measuring the
results of an application optimization is not the improvements to isolated parts of
the application but the overall improvement. Exact measurements of memory usage
can be difficult since multiple processes may be used for parallelism and scaling.

To make the measurements process more manageable the metric used to evaluate
the applications memory consumption is the total memory consumption of the entire
system. Any change to the applications memory consumption is directly reflected
in the total system consumption. Nmon [16] is a performance monitoring tool
for Linux systems that give access to various performance related data like CPU,
memory, network and disk usage. Using NMOM Visualizer [17] data exported from
Nmon can be visualized with different graphical representations.

3.3 Response time

One of the most important metrics for web applications is the response time. Users
only care about how responsive the application feels when they use it, not how mem-
ory efficient or well optimized it is. Given that a well optimized and memory efficient
application will often lead to lower response time, but this is not always true. There
may be factors outside the application that affect response time negatively. In or-
der to get measurements that as accurately as possible reflect the experienced speed

21



CHAPTER 3. METHODOLOGY

of an application response time is used as one of the main metrics for measuring
efficiency of application optimizations.

3.3.1 Measuring response time

To eliminate any network related interference all measurements of response time is
done locally on the same virtual server instance as the application server is running
on, that way external factors like network congestion has no effect on the results.
Measuring response time under perfect conditions where there is only one concur-
rent user has very little correlation to real world conditions where multiple users
are requesting information from the server at the same time. With this in mind
measurements of application response time are done while the application server is
under simulated load. This gives insight into how the application performs under
pressure.

Apache Bench

Apache Bench [3] is a very simple web server benchmarking tool that is pre-installed
on many Linux and Unix operating systems. It provides a simple command line
interface for making a set of concurrent HTTP request to a specific address and
offers a very simple overview of the results of the performance test, including mean
request time, requests per second and transfer rate.

One of the biggest advantages of using Apache Bench is the simplicity, it requires
no additional software to be installed on many server operating systems and it is
very easy to use. It can give a good overview of application performance but may
not offer enough information for any deeper analysis.

Httpress

Httpress [6] is another light weight HTTP server benchmarking tool very similar to
Apache Bench, but with the added feature of multi-threaded testing. With httpress
it is possible to utilize multiple threads when stress testing a server, which can be
very beneficial when very high intensity tests are required.

JMeter

Apache JMeter [8] is a mature and well used open source load testing software
written completely in Java. It offers a more extensive testing suite than both Apache
Bench and Httpress with functionality to create advanced test cases simulating users
doing real tasks. Results from JMeter can be analyzed and visualized in different
ways. It offers multi threaded benchmarking allowing high performance load testing
utilizing multiple CPU cores.

With the Ruby gem RubyJmeter [30] test plans for JMeter can be defined with
Ruby code which is automatically transformed into correct configuration files for
JMeter. Using Ruby to create test plans makes it easier to create more advanced

22



3.4. GARBAGE COLLECTION

and dynamic test plans. Current database table ids can be fetched and used in the
test plan without having to manually rewrite the configuration file.

3.4 Garbage collection

Garbage collection can have huge impact on application performance but it is a
very hard problem to solve. There are many theories and strategies for how to
make garbage collection as efficient as possible and minimize its impact on the per-
formance of the application. Garbage collectors for programming languages often
have very optimized default settings to provide good performance for most ap-
plications. Performance gains can be achieved by optimizing the settings to the
requirements of a specific application. CRuby, Rubinius and JRuby all have dif-
ferent approaches to garbage collection, each of which has specific advantages and
disadvantages.

3.4.1 Measuring the garbage collector performance

The time spent on garbage collection has a significant effect on overall application
performance, especially when the garbage collection pauses application execution
as in CRuby. Ruby offers access to various garbage collection related statistics and
profiling data that can be used to evaluate and improve the performance of the
garbage collector. [42] This information can be obtained in a similar way for both
CRuby and Rubinius.

The JRuby implementation of Ruby executes in the Java VM and therefore
supports tools written to analyze garbage collection in Java applications. Since
Java is a popular programming language in time critical applications much effort
has been put on optimizing the JVM garbage collector to make it have as little
negative impact on application performance as possible.

3.5 Benchmark environment

In a modern computer there are almost always multiple applications running at
the same time. Some of these applicaitons may be part of the operating system,
whilst others are run by the users. At any given time there are most likely more
processes running than available cores on the computer so the operating system
has to switch between the applications, allowing each application a fair share of
time to execute code on the CPU. There are many different algorithms for how to
schedule application execution but one thing they have in common is that execu-
tion is switched between processes to distribute execution time on the CPU [62].
The interleaving of process execution form an non-deterministic pattern making it
impossible to predict the sequences of execution. Normally this has very little effect
on application execution. For time critical applications however, process scheduling
may cause severe problems. The operating system performing a context switch to

23



CHAPTER 3. METHODOLOGY

allow some other process to execute at the wrong time can have a negative effect
on application performance.

To minimize external interference when benchmarking the application all tests
are performed in an isolated environment in the form of an Amazon AWS virtual
server. [2] Each instance is provisioned with the same applications using the applica-
tion provision tool Chef [4] and the database is imported using a SQL dump created
from the database used for development and testing. Amazon AWS C4.Xlarge in-
stances with a four core CPU and 7.5 GB ram are used to be able to see how the
application scales with CPU utilization and memory usage. Server computational
performance is nowadays mostly scaled by increasing the number of cores avail-
able to the system, in contrast to increasing the clock frequency. Therefore it is

important to consider how well the optimized application can utilize a multi core
CPU.

24



Chapter 4

Design and implementation

In order to be able to evaluate different optimization techniques and use the tools
presented in earlier chapters an application is required. For that reason a Ruby on
Rails application was developed, it was implemented using specifications received
from Slagkryssaren AB. [33] A summary of the received specifications can viewed in
table 4.1. To focus on optimizing server side operations the application was imple-
mented as an API with no front end. Drawing from experiences at Slagkryssaren
on what type of applications commonly suffer from scaling issues the application
was modeled after the very popular image sharing social network Instagram.|7]

The application is a REST style API providing the back-end functionality of a
simple image sharing social network. Users can create an account by submitting a
sign up request to the correct API endpoint. In order to access most of the services
users need to login with their account details and receive a request token that has
to be included with requests that require authentication. Logged in users can post
pictures, interact with other users by viewing and commenting their pictures. Users
can follow other users and each user has a personal feed that displays their own
posts as well as any posts made by the users they are currently following.

Table 4.1: Specification of evaluation API

‘ Path ‘ Params ‘ Response

String: username,
String: email,
String: password, 201,

Date: birthdate, bool:success
String: description,
String: gender,

user /signup

String: username, 200,

logi
user /login String: password bool:success

Continued on next page

25



CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.1 — Continued from previous page

Path Params ‘ Response
200,
bool: success,
user/:id object<User>,
int: following,
int: followers
2
Integer: offset, 00,
users .. bool:success,
Integer: limit
array <User>
200
int . offset ’
user/:id /followers [Hreser OTset, bool:success,
integer: limit
array <User>
200
Int : offset ’
user/:id /following Hresers onset, bool:success,
Integer: limit
array <User>
200
I : off ’
user/:id /feed nteger OTse g bool:success,
Integer: limit
array<Post>
File: image,
String: description, | 201,

post/create

Array:
Array:

tags,
user_ tags

bool:success

String: description,

200,

post/:id /update Array: tags, bool:success
Array: user_tags
‘ 200,
post/:id bool:successobject <Post>
o 201,
post/:id/like bool:success
200,

post/:id/likes

bool:success

post/:id/comments

Integer: offset,
Integer: limit

comment /create

Integer: post_id,
String: comment,
Array: tags,

Array: user_tags,

26

201,
bool:success

Continued on next page




Table 4.1 — Continued from previous page

Path ‘ Params ‘ Response

String: comment,
comment/:id/update | Array: tags,
Array: user__tags

200,
bool:success

200,
comment /:id bool:success,
object<Comment>

The feed helps users stay up to date with pictures shared by friends and family
and is a core feature of the image sharing social network. A user’s feed may contain
many posts. In order to keep the response at a manageable size and decrease
response time the application uses pagination to allow users to step trough a large
amount of posts divided into multiple pages.

Listing 4.1. Personalized feed

def feed

user = User. find (params.require (:id))

offset , limit = pagination_ values

feed users_ids = user.followings.pluck(:id)

feed users ids << user.id

feed posts = Post.where(author: feed_ users_ids)
.order (created__at: :desc)
.offset (offset ). limit (limit)

response = {

success: true,
offset: offset ,
limit: limit ,
result: feed_ posts
}
render json: response, status: :ok
end

Listing 4.1 shows the unoptimized code for the user feed endpoint, it finds the ids
of all the users the current user is following then fetches the posts made by the
user himself and his followings. The results are sorted after time of creation and
the correct pagination offset and limit is applied. The feed method shows how
Ruby on Rails integrates tightly with the database using the Active Record ORM.
Ruby models are automatically instantiated from the corresponding tables in the
database. The fetched information can be used as any Ruby object with its own
methods and attributes. This database abstraction makes the models independent
of the underlying database, therefore the database system can be changed without
having to change application code.

27



CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.2. User model

class User < Active Record:: Base

has_many :user_tags

has__many :posts, foreign_key: ’author_id’

has__many :likes

has_ many :tagged_posts, through: :user_tags, class_name: ’'Post’,
source: :post

has_many :user_ followings

has_ many :followings , through: :user_followings

has_ many :inverse_user_followings, class_name: ’UserFollowing’,
foreign_key: ’following_id’

has_many :followers , through: :inverse_user_followings, source: :user

def as_json(options = {})
super ({ except: [:password_digest, :token], include: :posts,
methods: [:following count, :followers_count]}.merge!(options))
end
end

Listing 4.2 shows a selection of the code for the User model, the user has many
associations to other models which are resolved through Active Record. They can
then be accessed directly from the user object. The relations between tables are
maintained by Active Record independently of the underlying database system, thus
allowing associations to be used even if the database system does not support rela-
tional enforcement using foreign keys. The followers association is a many to many
relation which is automatically created using a third intermediate table, this makes
it possible to access many to many associations from both sides of the association
just like any regular one to many association.

The as_json method defines which attributes of the object are to be serialized
when it is converted to JSON. Private fields like password_digest and token
are excluded from the JSON object and the results from the followers_count
and followings_count methods are included to show how may people the user is
following and how many other users are following him. The association to posts is
also included, making all posts by the user embedded inside the serialized JSON
object.

28



Chapter 5

Optimization

This chapter presents an overview of the how Ruby on Rails optimization tech-
niques and how performance was evaluated in this thesis project. A subset of the
optimization techniques presented in this chapter were implemented and evaluated
in this thesis project, the results from this evaluation is presented in the results
chapter.

5.1 Evaluation endpoints

In order to manage the project workload a subset of endpoints were chosen as
focus for optimizations, the same API endpoints were also used for performance
benchmarking to measure the effects of the optimizations. The optimization and
benchmarking endpoints were chosen on the merits of the importance of performance
for user experience as well as computational complexity of the operation. The user
is less likely to be bothered by additional waiting time for operations that are
more rarely used like creating an account, post or comment than browsing posts,
comments or their feed. Some API endpoints offer pagination, allowing the user
to step through pages of results. Here performance is very important for the user
experience as the user will make multiple requests to the application in one session
and any additional response delay will quickly become an annoyance. It is also
important to use endpoints that do not change the state of the database as this
may affect the results of other benchmarks.

5.1.1 Feed endpoint

The feed is a core feature of the image sharing application, users can view images
shared by their friends and acquaintances, it supports pagination to divide the re-
sults into pages that can be requested separately. Listing 4.1 shows the unoptimized
code for the feed endpoint. It offers the highest code complexity as posts made by
the user as well as any users he or she is following is gathered, organized and pre-
sented. The importance of the feed endpoint for application functionality as well

29



CHAPTER 5. OPTIMIZATION

as its inherent code complexity makes it a good endpoint for measuring application
performance.

5.1.2 Followers endpoint

The followers endpoint shows the ids and usernames of all people following a specific
user. Because its specification requires that it shows only id and username of the
users it adds additional complexity as the default way of serializing the user model
in JSON has to be overridden in order to support this custom representation.

Listing 5.1. Followers endpoint

def followers

offset , limit = pagination_values
user = User.find (params.require (:id))
response = {

success: true,

offset: offset ,

limit: limit ,

result: user.followers.offset (offset ).limit (limit)

}

response [: result |.define_singleton__method (:as_json,

—> (args) { super(only: [:id, :username], include: [], methods:

render json: response
end

, status: :ok

Listing 5.1 shows the unoptimized code for the followers endpoint, the complexity of
overriding the object JSON representation can lead to performance issues, therefore
it was chosen as one of the benchmarking endpoints.

5.1.3 Post comments endpoint

Post comments is a core feature to give users the ability to interact with other
users and make the picture sharing a more social experience. Every post can have
multiple comments and users may repeatedly check the comments of interesting
posts, performance is therefore essential for a good user experience.

Listing 5.2. Post comments endpoint

def post_ comments

offset , limit = pagination_ values

response = {
success: true,
offset: offset ,
limit: limit ,
result : Comment.where(post_id: params.require (:id))

.offset (offset ). limit (limit)

30



5.2. APPLICATION OPTIMIZATIONS

}

render json: response, status: :ok
end

Listing 5.2 shows the unoptimized code for the post comments endpoint, it relies on
the association between posts and comments in order to find all comments related
to a specific post.

5.1.4 Users endpoint

The users endpoint lists information about all registered users, to make the listing
of users more manageable the endpoint supports pagination to divide all the users
into pages that can be requested separately.

Listing 5.3. Users endpoint

def index
offset , limit = pagination_ values
users = User.order (:id). offset (offset ).limit (limit)
response = {success: true, result: users,
offset: offset , limit: limit}
render json: response, status: :ok
end

Listing 5.3 shows the unoptimized code for the users endpoint, it has little code
complexity but it gives great insight into performance of simple information fetching
and serializing of large sets of data to JSON. Many production applications mostly
forward information from the database to the users without the need for complex
program or database operations. Therefore it is important to consider this kind of
simple operation in overall application performance.

5.2 Application optimizations

This section describes optimizations that can be performed on an application level
in order to optimize performance.

5.2.1 Database queries

Most Ruby on Rails applications use the Active Record Object-relational mapping
(ORM) [1] to easily manage the application models stored in the database. It is the
default ORM for Ruby on Rails applications and offers an extensive and reliable
interface for accessing data in the database as well as drivers for most popular
database systems. With Active Record it is possible to query the database without
having to write database queries specific to the underlying database system. Queries
can be written using simple Ruby code which is converted into correct database
queries. This is very convenient for developers as they don’t have to write any

31



CHAPTER 5. OPTIMIZATION

platform dependent query code, but this convenience comes with a performance
cost. Active Record generated queries are not always efficient. To work as efficient
as possible with the database it is important to only fetch the attributes that are
needed for that functionality. Active Record however, does not make it convenient
to query for a subset of columns for specific models [42]. This often leads to more
data than necessary being fetched and more memory being allocated to store the
model objects.

Listing 5.4. Unoptimized Active Record query for feed endpoint

user = User.find (params.require (:id))

offset , limit = pagination_ values

feed _users_ids = user.followings.pluck (:id)

feed users ids << user.id

feed _posts = Post.where(author: feed_ users_ids)
.order (created__at: :desc)

.offset (offset ). limit (limit)

Listing 5.4 shows the unoptimized code for querying the database in the feed end-
point. It uses Ruby code to query the database with Active Record instead of
writing manual queries. This is very convenient but not always efficient. Listing 5.5
shows an optimized version of the same query, here only the information required
for the operation is fetched from the database instead of the entire model.

Listing 5.5. Optimized Active Record query for feed endpoint

feed __users_ids = UserFollowing.where(user_id: id)
.pluck (: following_id) << id
feed _posts = Post.select (:id, :description, :author_id,
:created__at, :updated_at)

.where (author: feed_ users_ids).order(created_at:

.offset (offset ). limit (limit)

5.2.2 Counter cache columns

The user model should contain the number of users that the specific user is following
and how many other users are following the user, in order to keep that information
always up to date it is normally calculated by executing a count query for the models
in the association. This can become a performance bottleneck when retrieving a
large amount of models, since each individual model has to execute a count query.
To relieve this problem Active Record supports counter cache columns, which
is an extra column added to the database that will contain the count for a specific
association, this count is automatically incremented when new models are added
to the association and decremented as they are removed. Counter cache columns
eliminate the need for any unnecessary counting queries to the database.

32

:desc)



5.2. APPLICATION OPTIMIZATIONS

5.2.3 Removing unnecessary middleware

Ruby on Rails is a very large web development framework with the goal to pro-
vide tools that cover all the most common use cases in modern web applications.
This helps developers quickly develop applications for differing project requirements.
This has the draw back that for any given project only a subset of all Ruby on Rails
middleware (modules) are actually used, by disabling unused middleware the Ruby
on Rails memory consumption can be decreased thus allowing more memory for
other operations.

The Rails::API [21] is a gem that is specifically developed to provide a leaner
Ruby on Rails specifically for API web applications. The main purpose of an API
is to provide requesting clients with information, by removing middleware that is
not needed by an API service the Rails: :API gem makes it possible to lower the
memory footprint of the application while still retaining all relevant Ruby on Rails
features. Due to time constrains of this project Rails: :API was not benchmarked
separately but included in the optimized application suite, however [22] shows a
15% decrease in base memory consumption and 12% decrease in response time with
Rails::API compared to using the full Ruby on Rails framework for a simple API
web application. Rails: : API provides such a good solution to making efficient API
applications with Ruby on Rails that it will be included in the planned fifth release
of Ruby on Rails. [23]

5.2.4 Caching

Ruby on Rails has built in support for caching reusable information in order to speed
up the retrieval process. It is capable of caching everything from object models,
database query responses to view rendering results and entire page responses.

SQL caching

SQL caching is a built in feature in Ruby on Rails which caches the result set from
a database query for the entire request, if the same query is encountered again
within the request the cached result set is returned without querying the database.
After the request is finished the cached values are automatically destroyed and used
resources are freed. [24]

Conditional GET caching

Conditional GET is part of the HT'TP specification and provides a way for servers
to tell clients whether the response has changed since the last request or not. When
a browser makes a GET request to the server it passes HTTP_IF_NONE_MATCH and
HTTP_IF_MODIFIED_SINCE headers to the server, this allows the server to determine
if the information that is available in the browser’s local cache is up to date or not.
If the information is current then the server only needs to respond with a 304 HTTP
header telling the browser to show the locally cached data, if the information on

33



CHAPTER 5. OPTIMIZATION

the other hand has changed the request is served and the new fresh information is
returned together with new header values for future requests. [24]

Listing 5.6. Conditional GET caching in the controller

class UsersController < ApplicationController
def show
user = User.find (params.require (:id))
if stale?(user)
response = { success: true,
result: UserSerializer .new(user, root: false) }
render json: response , status: :ok
end
end
end

Listing 5.6 shows an example of how to implement conditional GET caching for a
request. Conditional GET caching is a very efficient way of caching as the infor-
mation is already stored in the client meaning no duplicate information needs to
be transferred to the user if it is available in the cache. The performance gains
from conditional GET depend on how often information is requested multiple times
before it changes. When the cached information is up to date the server only has
to verify the freshness of the cached information and respond with a header, no
further processing is required for that request.

Custom caching

Ruby on Rails supports low-level custom caching, any information can be stored in
the cached and retrieved later. Database models, responses from external services
and other results from time consuming processes can be cached and reused for any
subsequent requests. When using custom caching the cache has to be kept up to
date either by setting an expiration time or by manually checking that the cached
information is still up to date. [24]

Caching JSON responses

Generating a JSON response to a request is a resource intensive task that often
requires information to be fetched from the database, processed and then converted
from a Ruby object to a JSON representation that can be sent to the client. Because
caching in RoR allows regular Ruby objects to be stored in the cache it is possible
to save the JSON representation of an entire model object in the cache to avoid
having to recreate it for any subsequent requests.

Listing 5.7. Code for caching JSON objects

class ApplicationSerializer < ActiveModel:: Serializer
delegate :cache_key, :to => :object

34



5.3. RUBY VERSIONS

# Cache entire JSON string
def to_json(xargs)
Rails.cache.fetch expand_cache_key(self.class.to_s.underscore,
cache_key, ’'to—json’) do
super
end
end

def serializable hash
Rails.cache.fetch expand_cache_key(self.class.to_s.underscore,
cache_key, ’serilizable —hash’) do
super
end
end

private
def expand_cache_key(xargs)
ActiveSupport :: Cache.expand_ cache_key args
end
end

Listing 5.7 shows the code for caching JSON representations of model objects in
Ruby on Rails. RoR specific methods to_json and serializable_hash are over-
ridden to check if information exists in cache before performing the operation. If
the information does not exist in the cache then the original methods are called
with super, the result from the method call is stored in the cache and returned.

5.3 Ruby versions

The optimized application was benchmarked with CRuby (MRI), JRuby and Ru-
binius. These implementations of Ruby differ fundamentally in some very important
aspects. CRuby uses a GIL to restrict parallel execution of threads and pauses ex-
ecution of code during the garbage collection phase. JRuby and Rubinius on the
other hand do support parallel execution of threads and do not pause execution for
garbage collection.

In order to get accurate performance results and to take advantage of the fea-
tures of the different Ruby versions while still retaining an environment close to real
world production environments CRuby was benchmarked using multiple processes.
Because the GIL inhibits parallel execution most production environments use mul-
tiple server processes each loading their own version of the application into the
memory. For optimal performance the application was tested using four processes,

35



CHAPTER 5. OPTIMIZATION

one for each core on the server.

For JRuby and Rubinius on the other hand one single process was used and
the number of threads was scaled until no performance gain was observed from
increasing the number of threads. JRuby’s performance peaked with 48 threads
while Rubinius plateaued at 32 threads.

5.4 Garbage collection

Many modern programming languages use a managed memory model. This means
that the system is responsible for cleaning up allocated memory after it is no longer
needed. In order to find and release memory resources that are not needed by
the application a garbage collector is used, the garbage collector scans the memory
allocated by the application and frees unused resources. Optimizing the Garbage
collector can be a complex task, Ruby makes it possible to supply garbage collection
related parameters to tailor the garbage collection after the specific needs of the
application. This is often a long process of measuring and fine tuning in order to
find anything close to optimal values for the GC settings. Since the settings are
dependent on the individual application there are no general rules for how to fine
tune garbage collection. TuneMyGC [29] offers a service to make an automated
analysis of a Ruby on Rails application running in CRuby. It provides suggestions
for custom garbage collection parameters to improve the application performance.
Due to time constraints this thesis project did not explore any additional garbage
collection optimization methods.

5.5 Other Ruby frameworks

Ruby on Rails is a very complex web framework with functionality to cover most
use cases for web applications. This leads to most applications only utilize a small
part of all the functionality offered by the framework, [28] discusses different Ruby
web frameworks and their performances in a minimal setup. For applications where
performance is a huge factor another framework than Ruby on Rails might be more
suitable. Switching frameworks requires much less work then rewriting the entire
code base in a new programming language. Due to the time constraints of this
project and the time consuming process of converting the entire test application to
another framework a very simple secondary application was developed in order to
be able to benchmark the performance overhead of Ruby on Rails compared to the
Ruby micro framework Cuba. [5] The application consists of a very basic API that
responds to requests with a JSON string.

Listing 5.8. Minimal API controller in Ruby on Rails

class HelloController < ApplicationController
def hello
data = { first: ’Hello’, last: World’ }

36



5.5. OTHER RUBY FRAMEWORKS

render json: data, status: :ok
end
end

Listing 5.9. Minimal API controller in Cuba

require ’cuba’
require ’json’

Cuba. define do
on get do
on root do
data = { first: ’'Hello’, last: *World’ }
res . headers|"Content—Type"] =
"application/json; charset=utf—8"
res.write data.to_json
end
end
end

Listing 5.8 and 5.9 show the minimal logic for the application API, using these
minimal applications the comparative overhead of the frameworks can be evaluated.

37






Chapter 6

Results

In the previous chapter we introduced different optimization methods for Ruby
and the Ruby on Rails frame work. In this chapter we present the results for the
optimizations we chose to perform for this thesis project.

6.1 Optimization tools

Multiple tools for measuring and evaluation the performance of Ruby on Rails
applications have been presented in earlier chapters of this report. However, not
all tools were used for for this project. After comparing the available tools a set
of tools for Ruby on Rails performance measurement and optimization was decided
on.

6.1.1 Benchmarking and performance measurement

JMeter was used for benchmarking the application with a simulated request load,
JMeter is more complex to set up than tools like Apache Bench and Httpress
however it supports configuration of advanced simulation plans and offers differ-
ent metrics for analyzing the results. The system monitoring tool Nmon was used
to measure system memory usage during application benchmarks.

6.1.2 Profiling

The application was profiled for CPU and memory usage in CRuby with the ruby-
prof gem, it is is one of the most popular Ruby profiling tools and is very simple to
use. To be able to use ruby-prof for memory profiling a patched version of CRuby
was used. Stack-prof was used as an additional resource for profiling memory usage
with CRuyby. As it shows memory usage in number of allocated objects instead of
size it makes it possible to find parts of the application that allocates an unnecessary
number of objects which may be hard to identify with other profilers.

In order to measure performance of small blocks of code within the application
the assert_performance gem was developed and used. It measures the execution

39



CHAPTER 6. RESULTS

time and memory usage of any give section of Ruby code. This was used to measure
the impact of small optimizations to isolated parts of the application.

The New Relic RPM performance monitoring gem was used for overall perfor-
mance measurement in a production like environment. It was used to identify which
APT endpoints were acting as bottleneck for overall application performance, these
endpoints were the main focus for further profiling and optimization.

Profiling was only done with CRuby as the time restrictions of this project did
allow for separate profiling and optimization of the application in CRuby, JRuby
and Rubinius.

6.2 Basic application optimizations

Median execution time for guery code with CRuby (improvement anncted in chart)
Time (ms)

75% 75 %

20r

B unoptimzed
W optimized

10

0

feed followers followings

Figure 6.1. SQL query time before and after optimization

By manually selecting information to fetch from the database we were able
to minimize the amount of information fetched from the database compared to
the default way of querying the database with Active Record. This reduces the
application memory allocation and improves application performance. Figure 6.1
shows the difference in SQL query performance before and after optimizing the
query logic for different endpoints. By only fetching required information from the
database the query execution time was significantly decreased.

The application was then further optimized by adding counter cache columns
to the database and by removing unnecessary Ruby on Rails middleware with
the Rails::API gem. This set of optimizations are denoted as optimized in fig-

40



6.3. CACHING

ures 6.2, 6.3, 6.4 and 6.5. The optimization decreased the response time by 14-36%
for the benchmark endpoints of the evaluation application. Figures 6.6 shows the
total system memory consumption for the application with different optimization
methods. We can see that the optimized application uses almost 300MB less mem-
ory than the unoptimized version. By using these simple optimization techniques
we were able to not only increase overall performance but also reduce memory
consumption significantly.

Avg. response time for feed endpoint (improvement annotated below)
Response time (ms)

8OO

GO0

4001

200

17% 17% 28% 33% -25% 7% 17%  29% 32% -26% 17% 17% 30% 33% -25%
50 concurrent connections 100 concurrent connections 150 concurrent connections

B unoptimized (CRuby) m optimized (CRuby) m optimized, JSON cache (CRuby)
o optimized, JSON cache & tuned GC (CRuby) m optimized, JSON cache (JRuby)
B optimized, JSON cache (Rubinius)

Figure 6.2. Feed response times for different optimizations

6.3 Caching

In addition to the Ruby on Rails built in SQL caching a custom caching layer was
implemented to cache the JSON representation of models stored in the database.
The already optimized application was built upon by adding JSON caching. In
figures 6.2, 6.3, 6.4 and 6.5 the application with a custom caching layer is denoted
as optimized, JSON cache. For the users endpoint the JSON caching improves
performance significantly with a 96% decrease in response time, the feed endpoint

41



CHAPTER 6. RESULTS

Avg. response time for followers endpoint (improvement annotated below)

Response time (ms)

GO0

5001

4001

3001

2001

1001

14% -17% -4% -11% -214% 13% -15% -8% -12% -213% 13% -18% -5% -10% -212%
50 concurrent connections 100 concurrent connections 150 concurrent connections

B unoptimized (CRuby) m optimized (CRuby) m optimized, JSON cache (GRuby)
o optimized, JSON cache & tuned GC (CRuby) m optimized, JSON cache (JRuby)
m optimized, JSON cache (Rubinius)

Figure 6.3. Followers response times for different optimizations

however shows unchanged response times with caching whilst the performance of
post comments is significantly degraded when JSON caching is introduced.

Caching can improve response time significantly if the operation that produces
the results is a time consuming task like in the case of the users endpoint, however
the logic required to keep the cache updated comes with a performance penalty and
may slow down the application instead of improving performance.

6.4 Ruby versions

The optimized application with JSON caching was evaluated in three different Ruby
implementations; CRuby, JRuby and Rubinius. Figure 6.2 shows that JRuby out-
performs CRuby noticeably on the feed end point figures however 6.3, 6.4 and 6.5
show only a slight improvement over CRuby on the other endpoints. Much of the
performance increase from JRuby comes from the JIT compiler and threading. If
the majority of the execution time is spent waiting for the database to perform
queries the advantages of JRuby will not make much difference. Rubinius on the

42



6.5. GARBAGE COLLECTION

Avg. response time for post comments endpoint (improvement annotated below)

Response time (ms)

500

400

300

200

100

26% 20% 34% 2% -73% 27% 29% 7% 3% -73% 27% 30% 7% 33% -72%
50 concurrent connections 100 concurrent connections 150 concurrent connections

B unoptimized (CRuby) m optimized (CRuby) m optimized, JSON cache (GRuby)
o optimized, JSON cache & tuned GC (CRuby) m optimized, JSON cache (JRuby)
m optimized, JSON cache (Rubinius)

Figure 6.4. Post comments response times for different optimizations

other hand performed significantly worse than the other Ruby implementations in
all tests.

Figures 6.6 and 6.7 show the memory consumption for the different Ruby im-
plementations for the feed benchmarking endpoint. JRuby uses significantly more
memory than both CRuby and Rubinius. It is easy to see that memory consumption
does not increase very steeply with increased server load. A load of 150 concurrent
requests just uses a few hundred MB more memory than 50 concurrent requests
for all Ruby implementations. Ruby and Ruby on Rails memory consumption does
not increase by much as the server load increases unless the number of threads or
processes are increased.

6.5 Garbage collection

The optimized application with JSON caching was evaluated with CRuby after tun-
ing the Ruby VM with garbage collection parameters suggested by the automated
analysis by TuneMyGC. Figures 6.2, 6.3, 6.4 and 6.2 show the difference in response

43



CHAPTER 6. RESULTS

Avg. response time for users endpoint (improvement annotated below)

Response time (ms)

5000

4000

3000

2000

1000

36% 96% 96% 96% 90% 35% 96% 96% 96% S0% 36% 96% 96% 98%
50 concurrent connections 100 concurrent connections 150 concurrent connections

B unoptimized (CRuby) m optimized (CRuby) m optimized, JSON cache (CRuby)
o optimized, JSON cache & tuned GC (CRuby) m optimized, JSON cache (JRuby)

0%

m optimized, JSON cache (Rubinius)

Figure 6.5. Users response times with different optimizations

time after optimizing the garbage collection. Tuning of the garbage collection im-
proved overall application performance for all evaluation endpoints and proved to be
a very efficient way of improving performance without having to make any changes
to the application code base.

Further manual tuning can improve application performance even more but re-
quires a deeper analysis of the application internals and how they affect garbage
collection. TuneMyGC is not available for JRuby and Rubinius but manual tun-
ing can be performed in order to more closely tailor the garbage collection to the
application. Thanks to the popularity of the Java JVM and its usage in many
performance critical applications optimization of the JVM is a topic that has been
extensively researched in the past. Due to time constraints no optimization of the
garbage collection was performed on JRuby and Rubinius, but the results from op-
timization of CRuby garbage collection can be used as an indicator to the efficiency
of garbage collection optimizations.

44



6.6. RUBY ON RAILS SERVER PERFORMANCE

Total system active memory for feed with 50 concurrent connections for 120s
WMemory (ME)

1500 m Unoptimized (CRuby)
/—_'— \ m Optimized (CRuby)
= JSON cached (CRuby)
1 JSON cached (JRuby)
® JSON cached (Rubinius)

Time (s)
40 60 80 100 120

Figure 6.6. Total system memory consumption for the feed endpoint with 50 con-
current connections benchmark. The memory drop after 120 seconds signifies the
benchmark ending

Total system active memery for feed with 100 concurrent eonnections for 120s
WMemory (MB)

m Unoptimized (CRuby)
1500 m Optimized (CRuby)

m JSON cached (CRuby)

= JSON cached (JRuby)
1'--'-'-f,- 1

B JSON cached (Rubinius)
40 60 80 100 120

Time (s)

Figure 6.7. Total system memory consumption for the feed endpoint with 150
concurrent connections benchmark. The memory drop after 120 seconds signifies the
benchmark ending

6.6 Ruby on Rails server performance

There are many different servers for Ruby, JRuby and Rubinius web applications
and the choice of server has large impact on overall application performance. Dif-
ferent Ruby versions perform differently with many of the available servers. All
benchmarking was done using the Puma application server [19] because it can be

45



CHAPTER 6. RESULTS

used with all Ruby versions and can take advantage of multithreading with JRuby
and Rubinius as well as multiple processes with CRuby.

When releasing a Ruby on Rails application it is important to take server per-
formance as well as configuration complexity into account. By choosing the correct
server for the platform significant performance gains can be achieved. Setting up
many different Ruby web application servers correctly is a time consuming pro-
cess. Due to the time constraints of this thesis project benchmarking was only
performed with the Puma server, however [32] benchmarked different Ruby web
servers and frameworks and found significant performance difference between the
popular web servers with same application. Figure 6.8 shows the throughput of

Server performance (requests/second)

Requests/seconds
3500

3000

W Puma (CRuby 2.1.0)

W Unicorn (CRuby 2.1.0)
B Puma (Rubinius 2.2.2)
O Unicern (Rubinius 2.2.2)
B Puma (JRuby 1.7.9)

W Torgbox (JRuby 1.7.9)

2500

2000

1500

1000

500

Figure 6.8. Ruby on Rails server performance. Adapted from [32]

different servers for different Ruby versions with a simple Ruby on Rails applica-
tion. Unicorn performs significantly better than Puma for CRuby, JRuby achieves
the best performance with the Torgbox server which significantly outperforms the
other servers.

Torgbox is the code name for the development project of Torquebox four [35].
Torquebox is an advanced application server developed specifically for JRuby ap-
plications. [36] JRuby with Torgbox provides the highest performance combination
for Ruby on Rails applications.

6.7 Other Ruby frameworks

Figure 6.9 shows an 82% lower response time with the Cuba compared to Ruby
on Rails with the simple test application. Whilst Ruby on Rails offers much func-
tionality to help develop applications as quickly and painlessly as possible it also

46



6.7. OTHER RUBY FRAMEWORKS

Average response time with 100 connections with CRuby (improvement annoted in chart)
Time (ms)

B0

40

W Ruby on Ralils
W Cuba

0

82 %

Figure 6.9. Average response time of applications using 100 concurrent request
threads over 60 seconds

comes with a significant performance penalty on even the simplest tasks compared
to smaller frameworks. Therefore it is important to consider whether the complexity
of Ruby on Rails is needed for the application development. If much of the function-
ality will not be utilized another Ruby framework may be a better fit for the project.
Smaller frameworks like Cuba often require more code to be written for the same
application functionality but also lowers the overall complexity of the application
significantly and thus makes it possible to create better performing applications.

Figure 6.10 shows the total system memory consumption for running Ruby on
Rails and Cuba both in idle and with 100 concurrent requests over 60 seconds. Ruby
on rails has significantly higher memory consumption in both idle and under stress.
For both frameworks the application server Puma was used to create four server
processes with four threads each using CRuby version 2.2.2. Cuba uses significantly
less memory under heavy load and seems to plateau at just under 500 MB total
system memory consumption while Ruby on Rails produces close to 700 MB memory
consumption. The Cuba framework performs significantly better while using less
memory under heavy load. These benchmarks were performed with a very simple
application and the results may differ for larger applications however they show
that Ruby web applications have the potential to perform well.

47



CHAPTER 6. RESULTS

Total active memory with CRuby

Memory (MB)

700

G600

500

400

300

200

100

m Ruby on Ralls
m Cuba

- Time (s)
10 20 30 40 50 B0 70

Figure 6.10. Total system memory consumption for Ruby on Rails and Cuba going
from idle to 100 concurrent requests

48



Chapter 7

Discussion and conclusion

This chapter is dedicated to discussing the results presented in the previous chapter
and the conclusions that can be drawn from this project. This thesis has described
how the Ruby on Rails web framework can be optimized to improve overall appli-
cation performance and make it easier to scale an application.

This thesis focuses on how to improve performance of an existing Ruby on Rails
application rather than how to start a new project. When developing a new product
it is often vital to be as quick as possible to develop and release a market ready
product, this is where Ruby on Rails shines. Performance and scaling is usually
something to deal with later in the product life cycle if and when the product
becomes popular enough. Due to the fact that many new products fail very early
it is often better to deal with performance problems at a later if they arise.

In order to increase performance we looked at different ways of optimizing Ruby
from ways of writing more efficient code, slimming down Ruby on Rails, caching,
garbage collection to using alternative Ruby versions and the performance of differ-
ent servers.

7.1 Writing efficient code

A developer should always strive to write the most efficient code possible. Ruby on
Rails however, abstracts away much of the database interaction with Active Record
making it so that developers do not even have to write any database queries but
can instead interact with the database using pure Ruby. This makes querying the
database very easy but the database specific queries that are generated are often
suboptimal performance wise. By writing queries that only fetch the minimum
required information from the database we saw significant increases in query per-
formance. With this in mind we propose a change in the mindset of how to interact
with the database in the Ruby on Rails community. It is very easy to just view
the database as an object store where your models are persisted and retrieved.
However, going back to the old mindset of tables and columns makes it easier to
realize exactly what information is needed for a certain task and query for only that

49



CHAPTER 7. DISCUSSION AND CONCLUSION

information instead of fetching and instantiating all the relevant model objects.

Ruby is not very fast compared to many other high performance programming
languages. It was never meant for writing time sensitive calculation heavy oper-
ations and should not be used for such a thing. Luckily it is easy to incorporate
code from other languages in a Ruby on Rails application, CRuby has great sup-
port for writing high performing extensions in C that can be called from the Ruby
code. JRuby has the added advantage of being able to use Java code wherever
needed throughout the application thus combining the fast development speed of
the dynamic programming language Ruby with the high performance of the static
language Java.

7.2 Increasing the performance of the application

When increasing the performance of an existing application it is important to take
into account how much change it requires to the existing code base. We saw that
choosing the best application server can improve performance significantly without
requiring any change to the application code, simple optimization of the garbage
collector also gave a noticeable improvement in application performance.

A simple yet efficient way of increasing performance is to introduce caching,
caching can improve performance immensely if the results of time consuming oper-
ations can be cached and reused. However, caching adds the additional complexity
of making sure that the cached information is always up to date and for some of the
benchmark endpoints this proved to deteriorate application performance instead of
improving it. It was unexpected that caching can have a significantly negative effect
on performance. Sometimes it is quicker to fetch information from the database and
create the response than making sure that the cached information is up to date and
fetching it from cache. It is important to analyze for which operations it makes
sense to cache and for which it does not. Caching can be done in layers from en-
tire responses down to single database queries giving multiple opportunities to find
information in the cache without having to perform the entire request.

JRuby offers the best performance of the evaluated Ruby implementations but it
also requires a significant change to the application in order to make it compatible.
Any Ruby gem that use C extensions for better performance is incompatible with
JRuby. For many popular gems there are Java implementations that can be used
instead. If however, the application relies on any incompatible gems that lack Java
based alternatives the functionality may have to be re-implemented in order to make
the application work with JRuby and this can be a very time consuming process.
The performance gains from switching to JRuby may out weight the conversion
complexity if performance is a big issue.

That JRuby would outperform CRuby was expected. The JVM is famous for
its high performance and the Ruby MRI is known to have performance issues. The
performance results of Rubinius on the other hand were not expected. On paper
Rubinius looks like a high performance Ruby implementation with its JIT compila-

50



7.3. BETTER SCALING OF THE APPLICATION

tion, advanced concurrent garbage collection and support for parallel execution in
system level threads. The results from the benchmarks surprisingly show that Ru-
binius performed much worse than both CRuby and JRuby. Time constrains for this
project did not allow for further investigation into what caused these performance
problems with Rubinius.

7.3 Better scaling of the application

When we talk about scaling in this thesis we talk about scaling the application to
cater to more users on a single server, this differs from the common definition of
scaling as adding more servers. Distributing the application to multiple servers is
something that is not handled by the Ruby on Rails framework and is considered
outside the scope of this thesis.

One big problem with scaling a CRuby application is that the GIL lock prevents
parallel execution of Ruby code, in order to achieve true parallelism multiple pro-
cesses have to be used, this means that the entire Ruby on Rails framework and
gems have to be loaded into memory multiple times since each process needs its
own copy. A big problem with process based scaling is that it requires much more
memory. JRuby and Rubinius on the other hand supports real threading which
allows each thread to share one singe instance of the Ruby on Rails framework in
memory. The application can now be scaled by increasing the number of threads
and because the memory increase with each thread is minimal it is easier to get the
best performance possible from the available server hardware.

7.4 Other Ruby frameworks

Ruby on Rails includes rather large overhead. It is possible to reduce it by removing
unused middleware but Ruby on Rails will never be a lean and fast framework. If
performance is a key priority then switching to a smaller and better performing
framework can be a good idea. The Cuba framework showed almost five times
faster average response time for a simple hello world application. This shows how
much overhead Ruby on Rails suffers from when it can be considered slow even for
such simple applications. Starting out with a small high performing framework and
only adding features that are needed for the application is a good way of designing
a high performance Ruby application. While this may be a costly process for an
existing application it is less work than rewriting the entire application in a different
higher performing programming language.

Cuba was expected to perform significantly better than Ruby on Rails because
it is a very small framework that comes with much less functionality and overhead
than Ruby on Rails. However, the fact that even for very simple applications that
only use the most basic functionality of Ruby on Rails the Cuba framework still
managed to produce an 82% decrease in response time as well significantly lower
total system memory usage indicates serious performance problems with the Ruby

51



CHAPTER 7. DISCUSSION AND CONCLUSION

on Rails frameworks. Maybe smaller more modular frameworks are preferable to
larger complex systems like Ruby on Rails when it comes to making the compromise
between performance and provided functionality.

7.5 Conclusion

After performing optimizations, benchmarks and evaluations of Ruby on Rails we
should conclude whether we were able to achieve the goals set up by our scientific
questions to determine if and how Ruby on Rails can be optimized for performance
and scalability.

7.6  What tools can be used to evaluate Ruby on Rails
performance and scalability?

In this project we evaluated many tools to measure and evaluate the performance
and found that the JMeter benchmarking application works well for benchmarking
applications to get a sense of how well it performs under severe stress. Because
performance usually becomes a problem when the application is under heavy stress
this is a very valuable tool for evaluation of performance in a worst case scenario.
JMeter can also be used to measure the scalability of the application, by gradu-
ally increasing the load it possible to get an idea how the application scales with
increased load.

The New Relic RPM performance monitoring gem provides very valuable infor-
mation as to which parts of the application are performance bottlenecks. Its light
weight overhead makes it possible to use it in a production system in order to gain
real world performance information. When a bottleneck has been localized then
Ruby compatible profilers like ruby-prof can be used to optimize the functionality
that is slowing the application down.

In order to reliably measure the execution time and memory consumption for
an arbitrary block of ruby code the assert_performance gem was developed. It
makes it easy to measure and log the performance of any piece of Ruby code to
track the efficiency performed optimizations.

7.6.1 Does Ruby implementation impact performance?

From our evaluation of the performance of CRuby, JRuby and Rubinius we found
that the Ruby implementation has a large impact on application performance.
JRuby produced the best performance of all the Ruby implementations and was
significantly faster than the others in some cases. The fact that JRuby makes it
easy to write performance dependent parts of the application in Java and call them
in the Ruby application makes an even bigger case for using JRuby over CRuby for
applications that require higher performance.

52



7.6. WHAT TOOLS CAN BE USED TO EVALUATE RUBY ON RAILS
PERFORMANCE AND SCALABILITY?

7.6.2 What parts of Ruby on Rails can be optimized?

Ruby on Rails is a very large framework with many different aspects that may
optimized for better performance. In order to stay within the project time frame
we made a choice to focus on optimizing certain parts of the framework.

Memory consumption

Ruby on Rails memory consumption can be optimized to a large degree by writ-
ing efficient application code. All models fetched from the database have to be
instantiated as Ruby objects and this can use substantial amounts of memory. By
only fetching the information that is needed memory usage can be decreased. Our
optimized application used almost 300 MB less total system memory than the un-
optimized version.

Object-relational mapping (ORM)

The built in ORM in Ruby on Rails is Active Record, it provides a convenient way
of storing and retrieving model objects from the database without having to write
database specific queries. This is very convenient as the underlying database system
can be changed without having to rewrite any of the code base. The database can be
queried using Ruby code which is converted to database specific queries by Active
Record. Unless manually specified the generated queries tend to fetch too much
information from the database. We were able to decrease query execution time by
75% by optimizing the queries to only the information required for each operation.
The Active Record ORM can be optimized for better performance, by analyzing the
queries generated by Active Record it is easy to find opportunities for optimization.

Garbage collection

We used TuneMyGC to perform an automated analysis of the application in order to
get suggestions for better tuned garbage collection parameters. Using the suggested
parameters increased performance in all benchmarks. This improvement was gained
without any manual tuning, only using the suggested parameters from TuneMyGC,
further manual tuning could possibly increase the performance even more. We
did not perform any garbage collector tuning for JRuby and Rubinius due to time
constraints but from our results we can conclude that optimizing the garbage col-
lection can improve performance substantially without requiring any change to the
application code base.

Choice of application server

Due to the complexity and time consumption of configuring multiple Ruby web
application servers for a production environment we did not benchmark the perfor-
mance of different Ruby servers, however related work shows that the application
server has a very large impact on overall application performance. JRuby with a

53



CHAPTER 7. DISCUSSION AND CONCLUSION

correctly configured Torgbox server performs substantially better than other Ruby
servers. We can conclude that performance can be improved by using the best
performing application server available for the chosen production environment.

Removal of unnecessary modules

The Rails: :API gem was benchmarked as part of the optimized application suite
and not benchmarked on its own, however related work shows that using the
slimmed down Rails::API middleware stack decreases application response time
and memory consumption. By removing unnecessary middleware we can retain all
the required functionality yet improve performance. For any API application we
recommend either using the Rails: :API gem or manually removing all middleware
related to the view in Ruby on Rails.

7.6.3 Verdict

Ruby on Rails can be made significantly faster with optimization and using JRuby
will both increase performance and make scaling the application much easier. How-
ever, Ruby on Rails is not a framework that should be used for performance critical
applications, Ruby on Rails is big and carries large overhead and will therefore never
be a fast framework compared to some of its leaner counterparts.

Ruby on Rails is great at what it was developed for, a general purpose web
application framework with focus on developer productivity. It can be optimized to
be fast enough for most production requirements but if performance is critical to
the application then we propose the use of a different framework. The Cuba micro
framework was almost five times faster than Ruby on Rails for a simple hello world
application and is a good starting point for development of a high performing Ruby
web application.

7.6.4 A high performance Ruby on Rails application

In order to achieve better performance with a Ruby on Rails web application we
propose

e Remove any unnecessary middleware from Rails, any modules that are not
needed by the application is a waste of resources.

e Do not fetch unnecessary information from the database. Models fetched from
the database need to be instantiated and later on garbage collected and this
consumes system resources.

o Use JRuby instead of regular CRuby for real threading and to take advantage
of the high performance of the Java JVM.

e Write calculation heavy functionality in Java which can be called from the
JRuby application in order to take full advantage of the high performance of
the Java programming language.

54



7.7. FUTURE WORK

e Use the Torgbox JRuby server, benchmarks show that Torgbox is by far the
highest performing JRuby web application server.

e Optimize the garbage collector either by automated analysis or manual tuning.

e Cache results from expensive operations if they can be reused for subsequent
requests. Fetching information from the cache can be multiple orders of mag-
nitude faster than performing an expensive operation so make sure to reuse
results where possible.

7.7 Future work

In this section we present some ideas for future work based on the results of this the-
sis. For future work we suggest a broader analysis of Ruby web frameworks. Ruby
on Rails may be the most popular framework but there are many other competent
frameworks available. One suggested topic is to analyze and compare the perfor-
mance and developer productivity between different popular frameworks. There
may be frameworks which offer close to the same developer productivity as Ruby
on Rails but with better performance. Such a framework would be ideal for devel-
oping applications that need to hit the market as quickly as possible but still needs
reasonable performance and scaling possibilities.

Another interesting idea is to evaluate how static typing would affect overall
Ruby performance. There are discussions on whether or not to implement an op-
tional static typing system for future versions of Ruby and this presents a good op-
portunity for a deeper analysis of how static typing would affect Ruby performance.
A static type system makes it easier for the interpreter to make optimizations as it
knows which type the variable is going to be and can optimize performance using
this information whereas in a dynamic typing system the interpreter has to account
for that the variable type can change.

As of writing this report a new major version of JRuby was released, the JRuby
9.0.0.0 features many new concepts and performance improvements. A deeper anal-
ysis of this new version is suggested as future work. With this new version maybe
Ruby on Rails and other Ruby web frameworks can perform even better.

55






Bibliography

[14]

[15]

[16]

Active record github. https://github.com/rails/rails/tree/master/
activerecord. [Accessed 28 June 2015].

Amazon aws website. http://aws.amazon.com/. [Accessed 28 June 2015].

Apache bench documentation. https://httpd.apache.org/docs/2.2/
programs/ab.html. [Accessed 28 June 2015].

Chef website. https://www.chef.io. [Accessed 28 June 2015].
Cuba ruby framework website. http://cuba.is. [Accessed 01 July 2015].

Httpress bitbucket repository. https://bitbucket.org/yarosla/httpress.
[Accessed 28 June 2015].

Instagram website. https://instagram.com. [Accessed 28 June 2015].
Jmeter website. http://jmeter.apache.org/. [Accessed 28 June 2015].

Jprofiler product website. https://www.ej-technologies.com/products/
jprofiler/overview.html. [Accessed 28 June 2015].

Jruby website. http://jruby.org. [Accessed 28 June 2015].
Json website. https://www.json.org. [Accessed 28 June 2015].

Kcachegind. http://kcachegrind.sourceforge.net/html/Home.html. [Ac-
cessed 28 June 2015].

A theory temporal and spatial locality. http://snir.cs.illinois.edu/PDF/
TemporalandSpatiallocality.pdf. [Accessed 28 June 2015].

Mongodb website. https://www.mongodb.org. [Accessed 28 June 2015].

New relic rpm github. https://github.com/newrelic/rpm. [Accessed 28 June
2015].

Nmon website. http://nmon.sourceforge.net/pmwiki.php, . [Accessed 28
June 2015].

o7



[17]

[18]
[19]
[20]
[21]

[22]

BIBLIOGRAPHY

Nmonvisualizer website. http://nmonvisualizer.github.io/
nmonvisualizer/, . [Accessed 28 June 2015].

Parse. https://www.parse.com/. [Accessed 28 June 2015].
Puma application server. http://puma.io/. [Accessed 18 August 2015].
Ruby on rails website. http://rubyonrails.org/, . [Accessed 28 June 2015].

Rails api gem github. https://github.com/rails-api/rails-api, . [Ac-
cessed 12 August 2015].

Json api with rails-api and active model serializ-
ers. http://adamniedzielski.github.io/blog/2014/03/02/
json-api-with-rails-api-and-active-model-serializers/, . [Accessed

12 August 2015].

Rails api to be part of rails 5. http://wyeworks.com/blog/2015/4/20/
rails-api-is-going-to-be-included-in-rails-5/, . [Accessed 12 August
2015].

Rails caching documenation. http://edgeguides.rubyonrails.org/
caching_with_rails.html, . [Accessed 19 August 2015].

Rubinius website. http://rubini.us, . [Accessed 28 June 2015].

Ruby on rails with rubinius. http://rubini.us/doc/en/guides/
migrating-from-mri-to-rubinius, . [Accessed 28 June 2015].

Ruby-prof. https://github.com/ruby-prof/ruby-prof, . [Accessed 28 June
2015].

Made by market blog. http://www.madebymarket.com/blog/dev/
ruby-web-benchmark-report.html, . [Accessed 01 July 2015].

Tunemygc service. https://tunemygc.com, . [Accessed 12 August 2015].

Rubyjmeter github. https://github.com/flood-io/ruby-jmeter, . [Ac-
cessed 28 June 2015].

Ruby website. http://www.ruby-lang.org, . [Accessed 28 June 2015].

Benchmark of different ruby web servers and frameworks. http://www.
madebymarket .com/blog/dev/ruby-web-benchmark-report.html, . [Ac-
cessed 18 August 2015].

Slagkryssaren website. http://slagkryssaren.com. [Accessed 28 June 2015].

Stackprof github. https://github.com/tmm1/stackprof. [Accessed 28 June
2015].

58



[35]

[36]
[37]
[38]

[41]

[42]

[43]

Torquebox blog. http://torquebox.org/news/2014/07/01/
torquebox-4-update/, . [Accessed 18 August 2015].

Torquebox website. http://torquebox.org/, . [Accessed 18 August 2015].
Yourkit product website. https://www.yourkit.com. [Accessed 28 June 2015].

Javier Alcézar Zapién. Debugging parallel programs using fork handlers. In
Proceedings of the Sizth International Workshop on Programming Models and
Applications for Multicores and Manycores, PMAM ’15, pages 112121, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3404-4. doi: 10.1145/2712386.
2712390. URL http://doi.acm.org.focus.lib.kth.se/10.1145/2712386.
2712390.

Stephen M. Blackburn and Kathryn S. McKinley. Immix: A mark-region
garbage collector with space efficiency, fast collection, and mutator perfor-
mance. In Proceedings of the 2008 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’08, pages 22-32, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.
1375586. URL http://doi.acm.org/10.1145/1375581.1375586.

E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377-387, June 1970. ISSN 0001-0782. doi: 10.1145/362384.362685.
URL http://doi.acm.org/10.1145/362384.362685.

Paul Deitel and Harvey Deitel. C++ How to Program. Prentice Hall
Press, Upper Saddle River, NJ, USA, 8th edition, 2011. ISBN 0132662361,
9780132662369.

Alexander Dymo. Ruby Performance Optimization: Why Ruby Is Slow and
How to Fizx It. Pragmatic Bookshelf, 2015.

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin,
Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare, Boris Zbarsky, Ja-
son Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael
Bebenita, Mason Chang, and Michael Franz. Trace-based just-in-time type
specialization for dynamic languages. SIGPLAN Not., 44(6):465-478, June
2009. ISSN 0362-1340. doi: 10.1145/1543135.1542528. URL http://doi.acm.
org/10.1145/1543135.1542528.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Sys-
tems: The Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA,
2 edition, 2008. ISBN 9780131873254.

David Geer. Will software developers ride ruby on rails to success? Computer,
39(2):18-20, February 2006. ISSN 0018-9162. doi: 10.1109/MC.2006.74. URL
http://dx.doi.org/10.1109/MC.2006.74.

59



[46]

[47]

[48]

[49]

BIBLIOGRAPHY

John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edi-
tion: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 5th edition, 2011. ISBN 012383872X, 9780123838728.

Mark D. Hill. What is scalability? SIGARCH Comput. Archit. News, 18(4):
18-21, December 1990. ISSN 0163-5964. doi: 10.1145/121973.121975. URL
http://doi.acm.org/10.1145/121973.121975.

Neal Leavitt. Will nosql databases live up to their promise? Computer, 43
(2):12-14, February 2010. ISSN 0018-9162. doi: 10.1109/MC.2010.58. URL
http://dx.doi.org/10.1109/MC.2010.58.

Yishan Li and S. Manoharan. A performance comparison of sql and nosql
databases. In Communications, Computers and Signal Processing (PACRIM),
2013 IEEE Pacific Rim Conference on, pages 15-19, Aug 2013. doi: 10.1109/
PACRIM.2013.6625441.

John McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Commun. ACM, 3(4):184-195, April 1960. ISSN
0001-0782. doi: 10.1145/367177.367199. URL http://doi.acm.org/10.1145/
367177.367199.

Remigius Meier and Armin Rigo. A way forward in parallelising dynamic
languages. In Proceedings of the 9th International Workshop on Implemen-
tation, Compilation, Optimization of Object-Oriented Languages, Programs
and Systems PLE, ICOOOLPS ’14, pages 4:1-4:4, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2914-9. doi: 10.1145/2633301.2633305. URL
http://doi.acm.org/10.1145/2633301.2633305.

Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and lan Dees. Using
JRuby: Bringing Ruby to Java. Pragmatic Bookshelf, 1st edition, 2011. ISBN
9781934356654

Rei Odaira, Jose G. Castanos, and Hisanobu Tomari. Eliminating global inter-
preter locks in ruby through hardware transactional memory. SIGPLAN Not.,
49(8):131-142, February 2014. ISSN 0362-1340. doi: 10.1145/2692916.2555247.
URL http://doi.acm.org/10.1145/2692916 . 2555247.

Zachary Parker, Scott Poe, and Susan V. Vrbsky. Comparing nosql mon-
godb to an sql db. In Proceedings of the 51st ACM Southeast Conference,
ACMSE 13, pages 5:1-5:6, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-1901-0. doi: 10.1145/2498328.2500047. URL http://doi.acm.org/10.
1145/2498328.2500047.

Sam Ruby, Dave Thomas, and David Heinemeier Hansson. Agile Web Develop-
ment with Rails 4. Pragmatic Bookshelf, 4th edition, 2013. ISBN 1937785564,
9781937785567.

60



[56]

Koichi Sasada. Yarv: Yet another rubyvm: Innovating the ruby interpreter. In
Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 158—
159, New York, NY, USA, 2005. ACM. ISBN 1-59593-193-7. doi: 10.1145/
1094855.1094912. URL http://doi.acm.org/10.1145/1094855.1094912.

Masatoshi Seki. druby and rinda: Implementation and application
of distributed ruby and its parallel coordination mechanism. Int.
J. Parallel Program., 37(1):37-57, February 20009. ISSN 0885-7458.
doi:  10.1007/s10766-1108-0086-1. URL http://dx.doi.org/10.1007/
s10766-1108-0086-1.

Pat Shaughnessy. Ruby Under a Microscope: An Illustrated Guide to Ruby
Internals. No Starch Press, San Francisco, CA, USA, 2013. ISBN 1593275277,
9781593275273.

Alan Jay Smith. Cache memories, volume 14. 1982.

Michael Stonebraker. Sql databases v. nosql databases. Commun. ACM, 53
(4):10-11, April 2010. ISSN 0001-0782. doi: 10.1145/1721654.1721659. URL
http://doi.acm.org/10.1145/1721654.1721659.

Jesse Storimer. Working with Ruby Threads. Pragmatic Bookshelf, 2013.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2nd edition, 2001. ISBN 0130313580.

Dave Thomas, Andy Hunt, and Chad Fowler. Programming Ruby 1.9 &
2.0: The Pragmatic Programmers’ Guide. Pragmatic Bookshelf, 2013. ISBN
1937785491, 9781937785499.

Kevin Williams, Jason McCandless, and David Gregg. Dynamic interpre-
tation for dynamic scripting languages. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’10, pages 278287, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
635-9. doi: 10.1145/1772954.1772993. URL http://doi.acm.org/10.1145/
1772954 .1772993.

Alexander Yermolovich, Christian Wimmer, and Michael Franz. Optimization
of dynamic languages using hierarchical layering of virtual machines. In Pro-
ceedings of the 5th Symposium on Dynamic Languages, DLS ’09, pages 79-88,
New York, NY, USA, 2009. ACM. ISBN 978-1-60558-769-1. doi: 10.1145/
1640134.1640147. URL http://doi.acm.org/10.1145/1640134.1640147.

61






Appendix A

Code

A.1 Assert performance gem

require "assert__performance/version'
require "benchmark"

require "parse—ruby—client"

require ’'rubygems’

require "active_record’

7

# Benchmarks code and database calls and optionally submits
results to a Parse database

#

# Modified from example in "Ruby Performance Optimization :
Why Ruby Is Slow and How To Fizx It

# written by Alexander Dymo

#

#

module AssertPerformance

class PerformanceTestTransactionError < StandardError
end

def self.benchmark code(name, &block)
operation_results = nil
read , write = IO. pipe
(0..30) .each do |i|
# Force GC to reclaim all memory used in previous run
GC. start

pid = fork do

63



APPENDIX A. CODE

# GC extra memory that fork allocated
GC. start

# Disable GC if option set

GC. disable if ENV['RUBY_DISABLE GC" ]

# Store results in a between runs

benchmark results = File.open("benchmark results_ #{
name}", "a')
elapsed__time, memory_ after, memory_before = nil
begin
ActiveRecord :: Base. transaction do
memory__before = ‘ps —o rss= —p #{Process.pid} ‘.
to_ 1
elapsed__time = Benchmark:: realtime do
operation_results = yield
end
memory_after = ‘ps —o rss= —p #{Process.pid} ‘.
to 1
raise PerformanceTestTransactionError
end

rescue PerformanceTestTransactionError
# Rollback database
end
# Skip first run to exclude cold start measurements
if i >0
# Store runtime
benchmark results.puts elapsed_time.round (6)
end
benchmark results.close

GC.enable if ENV['RUBY DISABLE GC']

read . close

results = {results: operation_results
memory__after — memory_ before) }

Marshal .dump(results , write)

, memory: (

end

Process :: waitpid pid

measurements = File.readlines("benchmark_ results_#{name}

") .map do |value|
value .to f

File.delete ("benchmark results_#{name}")

64



A.1. ASSERT PERFORMANCE GEM

average = average (measurements).round (5)
stddev = standard deviation (measurements).round (5)

# If parse object is set store results in parse database
for further amnalysis

id = nil

if @parse
parse_benchmark = Parse:: Object .new (" CodeBenchmark")
parse_benchmark [ "time’] = Time.new
parse__benchmark [ 'name’] = name
parse__benchmark | ’average "] = average
parse_benchmark [ ’standard__deviation’] = stddev

parse_msg = parse_benchmark.save
puts "Saving data to Parse: #{parse_msg}"
id = parse_benchmark|"objectId"]

end

# Return benchmark and operation results so they can be
validated

write.close

process_results = read.read

processed__results = Marshal.load (process_results)

return {

results: processed_results[:results],
benchmark: {
name: name,
average: average,
standard deviation: stddev,
memory: processed_results [: memory],
id: id
}
}

end

def self.benchmark database(name)
result = []
ActiveSupport :: Notifications.subscribe "sql.
active_record"' do [*xargs|

event = ActiveSupport:: Notifications :: Event.new(*xargs)
query_name = event.payload [:sql]
next if [’SCHEMA’].include?(query_name)
result << query_name

end

yield

ActiveSupport :: Notifications.unsubscribe ("sql.

65



APPENDIX A. CODE

active_record")
id = nil
if @parse
parse_benchmark = Parse:: Object.new("DatabaseBenchmark

")

parse_benchmark [ 'name’] = name
parse_benchmark [ "queries’| = result
parse_msg = parse_benchmark.save

puts "Saving data to Parse: #{parse_msg}"
id = parse_benchmark["objectId"]
end
# Put results into hash under benchmark to match
benchmark_code structure
{ benchmark: {name: name, queries: result, id: id} }
end

def self.standard_deviation (measurements)
Math. sqrt (measurements. inject (0) {|sum, x| sum + (x —
average (measurements)) xx 2}.to_f / (measurements.
size — 1))
end

def self.average(measurements)
measurements. inject (0) { |sum, x| sum + x }.to f /
measurements. size
end

def self.setup_parse(parse_details)
Parse.init (parse__details)

@parse = true
puts "Setting up parse’
end

end
A.2 Application

A.2.1 Models

User

class User < ActiveRecord :: Base
has_ secure_ password

validates :username, :email, presence: true, uniqueness:
true

66



A.2. APPLICATION

validates :birthdate, :description, :gender, presence:
true
validates :password, length: { minimum: 6 }, on: :create

has_many :user_tags

has_ many :posts, foreign_key: ’author_id’

has__many :likes

has__many :tagged_posts, through: :user_tags, class_name: ’
Post’, source: :post

has _many :user_ followings

has_ many :followings , through: :user_followings

has_ many :inverse_user_ followings , class_name: ’
UserFollowing ', foreign_key: ’following_id’

has_ many :followers, through: :inverse_user_followings,
source: :user

# Check username and password, if they match
# generate a globally unique token and return it
def self.authenticate (username, password)

user = self.find_by(username: username)
if user && user.authenticate (password)
begin
token = SecureRandom . hex
end while self.find_by(token: token)
user . token = token
user .save !
token
end

end

# If correct accesstoken 1is given return user else nil
def self.authenticate_with_ token (token)

User.find by (token: token)
end

def active model serializer
UserSerializer
end

# Follow a user only if we aren’t following him/her
already

def follow (user_to_ follow)

67



APPENDIX A. CODE

if (self.id != user_to_follow.id && self.followings.where
(id: user to_ follow.id).count = 0)

self . followings << user_to_ follow
self .save!

else
false

end

end

end
User following
class UserFollowing < ActiveRecord :: Base

belongs_to :user, touch: true, counter_cache:
followings_count

belongs_to :following , class_name: ’'User’, touch: true,
counter_ cache: :followers count
end
User tag

class UserTag < ActiveRecord :: Base
belongs_to :post, touch: true
belongs_to :user, touch: true
belongs_to :comment, touch: true
end

Tag

class Tag < ActiveRecord :: Base
validates :text, presence: true, uniqueness: true
has__and_belongs_to__many :posts, touch: true
has__and_ belongs_to_many :comments, touch: true
end

Post

class Post < ActiveRecord :: Base
include Taggable
validates :image, :description, presence: true

belongs_to :author, class_name: ’User’, touch: true
has__and_ belongs_to_many :tags, touch: true
has__many :user_tags

has__many :comments

68



A.2. APPLICATION

has_many :likes
has__many :tagged_ users,
User’, source: :user

through: :user_tags, class_name:

mount__base64__uploader :image, ImageUploader

end

Like

class Like < ActiveRecord :: Base
belongs_to :user, touch: true
belongs_to :post, touch: true

def self.like (user, post)
if (Like.where(user: user, post: post).count = 0)

Like.create!(user: user, post: post)
else
false
end
end
end

Comment

class Comment < ActiveRecord :: Base
include Taggable
validates :comment, presence: true
belongs_to :author, class_name: ’User’,
belongs_to :post, touch: true
has__and_belongs_to_many :tags, touch: true
has_many :user_tags

touch: true

has__many :tagged_users, through: :user_tags, class_name:
User’, source: :user
end
Concerns

module Taggable

extend ActiveSupport :: Concern

# Sets up correct associations for a post

# @param {Array} tags — Tags for the post

# @param {Array} users_tagged — Users to be tagged in the
post

def create_assoc_and_save(tags = [], users_tagged = [])
tags = [tags] unless tags.respond_to?(’each’)

69



APPENDIX A. CODE

users__tagged = [users_tagged]| unless users_tagged.
respond_to?(’each”)

self.tags = tags

user__tag_args = {}

users_ tagged.each do |user|

user__tag_args|[self.class.name.downcase.to_sym]| = self
user__tag_args|[:user| = user
UserTag.create!(user_tag args)
end
self.save!
self.id
end
end
Uploaders

# encoding: utf—8
class ImageUploader < CarrierWave :: Uploader :: Base

# Include RMagick or MiniMagick support:
# include CarrierWave :: RMagick
# include CarrierWave :: MiniMagick

# Choose what kind of storage to wuse for this wuploader:
storage :file

# storage :fog

# QOwverride the directory where uploaded files will be
stored .

# This is a sensible default for wuploaders that are meant
to be mounted:

def store dir
"uploads/#{model. class.to_s.underscore}/#{mounted_as}/#{

model .id }"
end

# Provide a default URL as a default if there hasn’t been
a file uploaded:

# def default__url

# # For Rails 3.1+ asset pipeline compatibility:

# # ActionController:: Base. helpers.asset_path("fallback
/" + [version_name, "default.png"].compact.join(’_"))

#

70



>
o

. APPLICATION

"/images/fallback /" + [version_name, "default.png"].
compact.join(’_")
end

Process files as they are uploaded:
process :scale => [200, 300]

def scale(width, height)
# do something
end

Create different wversions of your uploaded files:
version :thumb do

process :resize_to__fit => [50, 50]
end

Add a white list of extensions which are allowed to be
uploaded .
For images you might use something like this:
def extension__white__list
Jaw(jpg jpeg gif png)
end

Override the filename of the uploaded files:
Avoid wusing model.id or wversion_name here, see uploader/
store.rb for details.
def filename
"something.jpg" if original_filename
end

I HFHR O ThH R HFHRFH O KR HRFH BB FHRHHRFHR KR %

end
A.2.2 Serializers

User serializer

class UserSerializer < ApplicationSerializer

attributes :id, :username, :email, :birthdate,
description , :gender, :followings_count ,
followers__count , :posts
def posts
object .posts.pluck (:id)
end
end

71



APPENDIX A. CODE

User follow serializer

class UserFollowSerializer < ApplicationSerializer
attributes :id, :username
end

Post serializer

class PostSerializer < ApplicationSerializer
attributes :id, :image, :description, :author

def image

"/uploads/post/image/#{object.id}/file .png"
end

def author
object .author_id
end
end

Like serializer

class LikeSerializer < ApplicationSerializer

attributes :id, :user
def user
object .user_id
end
end

Comment serializer

class CommentSerializer < ApplicationSerializer
attributes :id, :comment, :author, :post

def author
object .author_id
end

def post
object .post_id
end
end

A.2.3 Controllers

Users controller

72



A.2. APPLICATION

class UsersController < ApplicationController
include Pagingable
#before__filter :restrict_access, except: [:sign_up,
log_in, :feed]

def sign_up
user = User.new (signup__params)
if user.save
response = {success: true, result: user.id}
render json: response, status: :created
else
response = {success: false}
render json: response, status: :internal_ server_error
end
end
def log_ in
params = login_ params
token = User.authenticate (params| ’username’]|, params][’
password ’|)
if token
response = {success: true, result: token}
render json: response, status: :ok
else
response = {success: false}
render json: response, status: :unauthorized
end
end
def show
user = User.find (params.require (:id))
if stale? user
response = { success: true, result: UserSerializer.new
(user, root: false) }
render json: response , status: :ok
end
end
def index
offset , limit = pagination_values
users = User.select (:id, :username, :email, :birthdate,
:description , :gender, :followings_count ,

followers__count , :updated_at).order (:id). offset (
offset).limit (limit)
if stale? users

73



APPENDIX A. CODE

render json: UserSerializer.array_to_json(users, {

success: true, offset: offset, limit: limit}) ,
status: :ok
end

end

def following
offset , limit

pagination_ values
user = User. find (params.require (:id))

followings user . followings . offset (offset).limit (limit)
if stale? followings

render json:

UserSerializer.array_to_json(followings ,

{success: true, offset: offset, limit: limit})

status: :ok

end
end

def followers
offset , limit

pagination_ values

user = User. find (params.require (:id))
followers = user.followers.offset (offset).limit(limit)
if stale? followers

render json: UserSerializer.array_to_json(followers , {

success: true, offset: offset, limit: limit})

status: :ok

end
end

def following_posts
offset , limit

pagination_ values

following ids = UserFollowing.where(user_id: id).pluck (:
following_id)

posts = Post.select (:id, :description, :author_id,

created__at, :updated_ at).where(author: following_ ids)
.order (created__at: :desc).offset(offset).limit(limit)

if stale? posts

render json: PostSerializer.array_to_json(posts, {

success: true, offset: offset, limit: limit})

)
status: :o0k

end
end

def followers_posts
offset , limit

pagination_ values

74



A.2. APPLICATION

id = params.require (:id)

follower ids = UserFollowing.where(following id: id).
pluck (:user_id)

follower__posts = Post.select (:id, :description ,

author_id, :created_ at, :updated_ at).where(author:
follower__ids).order (created_at: :desc).offset (offset)
limit (limit)
if stale? follower_posts
render json: PostSerializer.array_to_ json(
followers__posts, {success: true, offset: offset
limit: limit}) , status: :ok
end
end

# A user’s feed is all posts made by that user or any of
the users it follows
# ordered by time of posting

def feed
offset , limit = pagination_values
id = params.require (:id)
feed users ids = UserFollowing.where(user id: id).pluck

(: following_id) << id
feed _posts = Post.select (:id, :description, :author_id,
:created__at, :updated_at).where(author:
feed users_ids).order (created_at: :desc).offset (
offset).limit (limit)
if stale? feed_ posts
render json: PostSerializer.array_to_json(feed_posts,

{success: true, offset: offset, limit: limit}) |,

status: :ok
end
end
private
def login_ params
params. permit (: username, :password)
end

def signup_ params
params.permit (:username, :email, :password, :birthdate,
:description , :gender)
end
end

(0]



APPENDIX A. CODE

Posts controller

class PostsController < ApplicationController
include TagSearchable
before_ filter :restrict__access , except: :show

def show
post = Post.find (params.require (:id))
if stale? post
response = {
success: true,
result: PostSerializer .new(post, root: false)

}

render json: response
end
end

def create

post = Post.new
post.author = @Qauthenticated_user
post.description = params|[: description |
post.image = params [:image]
tags = find__tags(params|[: tags])
user__tags = find_user_tags(params|[: user_tags])
id = post.createiassociandisave(tags, useritags)
if id

render json: {success: true, result: id}, status:

created

else

render json: {success: false}, status:
internal server__error

end

end

def update
post = Post.find (params.require (:id))
post.description = params|[: description]| if params.

has_key ?(: description)

post.tags = find_tags(params|[:tags]) if params.has_key
?7(:tags)

post.tagged_ users = find__user_tags(params|[: user_tags])
if params.has_key?(:user_tags)

76



A.2. APPLICATION

if post.save
render json: {success: true}, status: :ok
else
render json: {success: false}, status:
internal server error
end
end

end

Likes controller

class LikesController < ApplicationController
before_filter :restrict__access, except: :post_likes

def create
post = Post.find (params.require (:id))
Like.like (@Qauthenticated__user, post)
render json: {success: true}, status: :created
end

def post_ likes
post = Post.find (params.require (:id))
post_likes = post.likes
if stale? post_likes
render json: LikeSerializer.array_to_json(post_likes,
{success: true}) , status: :o0k
end
end
end

Comments controller

class CommentsController < ApplicationController
include TagSearchable
include Pagingable
before filter :restrict_access, except: [:show,
post__comments ]

def show
comment = Comment. find (params.require (:id))
if stale? comment
response = {
success: true,
result: CommentSerializer .new(comment, root: false)

7



APPENDIX A. CODE

}

render json: response, status: :ok
end

end

def create

comment = Comment . new
comment .comment = params.require (:comment )
comment. post = Post.find (params.require (: post))
comment . author = @Qauthenticated user
tags = find_ tags(params|[:tags])
user__tags = find__user_tags(params[: user_tags])
id = cmnnwntAneategassoqiandgﬁave(tags, userﬁtags)
if id
render json: { success: true, result: id }, status:
created
else

render json: {success: false}, status:
internal server error

end
end
def update
comment = Comment. find (params.require (:id))
comment .comment = params [: comment| if params.has_key?
comment
comment . tags = find__tags(params[: tags]) if params.
has_key 7 (:tags)
comment . tagged users = find_user_tags(params [: user__tags

]) if params.has_key?7(:user_tags)

if comment.save

render json: { success: true }, status: :ok
else

render json: { success: false }, status:
internal server_ error
end

end

def post_comments
offset , limit = pagination_ values
comments = Comment. select (:id, :comment, :author_id,
post_id, :updated_at).where(post_id: params.require (:

78



A.2. APPLICATION

id)).offset (offset).limit (limit)
if stale? comments

render json: CommentSerializer.array_to_ json (comments,

{success: true, offset: offset, limit: limit})
status: :ok

end
end
end

Concerns

module Pagingable
extend ActiveSupport :: Concern

private
def pagination_ values
offset = (params][: offset] || 0).to_i
# Set limit to supplied value if any otherwise default
to 10

# max limit 100 per request
limit = (params]|[:limit]| || 10).to
limit = 100 if limit > 100
return offset , limit
end

end

_i

module TagSearchable
extend ActiveSupport:: Concern

private
def find_tags(tags_param_arr)
tags = []

if (tags_param_arr)
tags_param_arr.each do |tag]

tags << Tag.find_or_create_by(text: tag)
end

end
tags
end

def find_ user_tags(user_tags param_ arr)

# Find all users that have been tagged
user__tags = []

if (user_tags_param_ arr)
user__tags_param_ arr.each do |user_tag]|

user = User.find_ by (username: user_tag)
user_tags << user if user

79



APPENDIX A. CODE

end
end
user__tags
end
end

A.2.4 Tasks

DB generation rake task

namespace :db do
desc "Clears and sets correct values for counter caches'

task set counter cache: :environment do
User.find each do |u]
User.reset__counters(u.id, :followers)
User.reset counters(u.id, :followings)
end
end

desc "Creates a dataset to use for testing, takes size as
an environment variable'

task generate: :environment do
size = ENV[’size’] || 100
size = size.to i
start time = Time.now

# Generate tags
tags = []
size .times do
tags << FactoryGirl.create (:tag)
end

size .times do |1i|
if i %10 =0
puts "#{i/size} % done (#{i} of #{size}) in #{(Time.
now — start_time).round(4)} seconds"
end
user = FactoryGirl.create (: user)

# Fach users has 0 — 50 posts
rand (0..50) . times do
# Create 0 — 5 tags and user_tags for each post
user__tags = []
post__tags = []
rand (0..5) . times do
user_tags << User. all.sample

80



A.2. APPLICATION

post__tags << tags.sample
end

FactoryGirl.create (: post, author: user, tags:
post_tags, tagged_ users: user_tags)
end

# Fach user makes 0 — 100 comments
rand (0..100) . times do
FactoryGirl.create (:comment, author: user, post_id:
Post. all .sample)
end

# Fach user likes 0 — 200 posts
rand (0..200) . times do

Like.like (user, Post.all.sample)
end

# Fach user folows 0 — 100 other users
rand (0..100) . times do
user . follow (User. all .sample)

end

end

puts "Data generation completed in #{(Time.now —
start__time).round(4)}"

end
end

JMeter test plan generation task

7
# Task for generating JMeter test plans for a set of API
endpoints that are used for benchmarking the API
# either run with default settings 25 threads for small and
100 threads for large
# or number of threads can be overridden by specifying a
threads parameter
a
namespace :benchmark do
port = 3000
desc "Benchmarks /users with 25 concurrent threads for 120
S"
task users: :environment do
thread count = num_threads

81



APPENDIX A. CODE

ids = setup
test do
threads count: thread_ count, rampup: 5, duration: 120
do

header ({name: ’Authorization’, value: "Token #{ids [:
user |. token}"})

visit name: ’/users’, url: "http://localhost/users",
port: port
end
end.jmx( file: "benchmark/users_#{thread count} testplan.
jmx")

end

desc "Benchmarks /user /:id/feed with 25 concurrent threads

for 120s"
task feed: :environment do
thread count = num_threads
ids = setup
test do
threads count: thread_ count, rampup: 5, duration: 120
do

header ({name: ’Authorization’, value: "Token #{ids [:
user |. token}"})

visit name: ’/user/:id/feed’, url: "http://localhost
Juser/#{ids [: user |.id}/feed",

port: port
end
end.jmx( file: "benchmark/feed #{thread_ count}_testplan.
jmx")

end

desc "Benchmarks /user/:id/followers with 25 concurrent
threads for 120s"

task followers: :environment do
thread count = num_ threads
ids = setup
test do
threads count: thread_ count, rampup: 5, duration: 120
do

header ({name: ’Authorization’, value: "Token #{ids [:
user |. token}"})

visit name: ’/user/:id/followers’, url: "http://
localhost /user/#{ids [: user].id}/followers",

port: port

82



A.2. APPLICATION

end

end.jmx( file: "benchmark/followers_#{thread count}
__testplan.jmx")
end

desc "Benchmarks /post/:id/comments with 25 concurrent
threads for 120s"

task post__comments: :environment do
thread count = num_ threads
ids = setup
test do
threads count: thread_count, rampup: 5, duration: 120
do

header ({name: ’Authorization’, value: "Token #{ids [:
user |. token}"})
visit name: ’/post/:id/comments’, url: "http://
localhost /post/#{ids [: post].id}/comments"
port: port
end

end.jmx( file: "benchmark/post_comments_#{thread_count}
_testplan.jmx")

end
task all: :environment do
thread count = num_threads
ids = setup
test do
threads count: thread_ count, rampup: 5, duration: 120
do
header ({name: ’"Authorization’, value: "Token #{ids [:
user |. token}"})
visit name: ’/users’, url: "http://localhost/users"
visit name: ’/user/:id/feed’, url: "http://localhost
/user/#{ids [: user].id }/feed"
visit name: ’/user/:id/followers’, url: "http://
localhost /user/#{ids [: user].id}/followers"
visit name: ’/post/:id/comments’, url: "http://
localhost /post/#{ids [: post].id }/comments" ,
port: port
end
end.jmx( file: "benchmark/all #{thread count} testplan.
")
end

83



APPENDIX A. CODE

desc "Delete all files in benchmark folder"

task clear: :environment do
FileUtils.rm_rf ’'benchmark/.’
end
private
# Fither set the number of threads manually or default to
25
def num_ threads
begin
return Integer (ENV|[ ' threads’])
rescue
return 25 # Default to small with no args
end
end
def setup

User.connection

Post.connection

ids = {}

# Get the user who follows the most users to make feed
as heavy as possible for a worst case scenario

ids [: user] = User.select (’users.*, COUNT(user_followings
.id) AS followings count’).joins (:user followings).
group ( "users.id ’).order( ’followings_count DESC’).
limit (1) . first

# Get the post with the moste comments to make post
comments as heavey as possible for a worst case
scenario

ids [: post] = Post.select(’posts.*, COUNT(comments.id) AS
comments_count’).joins (:comments).group(’'posts.id’).
order ( ’comments_count DESC’).limit (1) . first

User.authenticate(ids [: user].username, "password")

ids [: user]. reload

return ids

end
end

84






